Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu Mar 2015

Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu

Fanglin Chen

Tin–oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800 °C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.


Effect Of Molybdenum Disulfide Particle Sizes On Wear Performance Of Commercial Lubricant, Innovative Research Publications Irp India, S. M. Muzakkir, Harish Hirani Mar 2015

Effect Of Molybdenum Disulfide Particle Sizes On Wear Performance Of Commercial Lubricant, Innovative Research Publications Irp India, S. M. Muzakkir, Harish Hirani

Innovative Research Publications IRP India

Experimental investigations have been conducted for determination of effectiveness of employing a combination of three particle sizes (40 nm size, 1.75 μm size and 53 μm size) of Molybdenum Disulphide as anti-wear additive in a commercial lubricant. The conformal block and disk configuration has been used to conduct experiments for determination of wear of the sliding surfaces. The performance of the proposed combined particle sizes anti-wear additive is compared with single particle size anti-wear additives to establish its robustness under varying surface conditions.


Eulerian-Lagrangian Analysis Of Solid Particle Distribution In An Internally Heated And Cooled Air-Filled Cavity Jan 2015

Eulerian-Lagrangian Analysis Of Solid Particle Distribution In An Internally Heated And Cooled Air-Filled Cavity

Faculty of Engineering University of Malaya

A parametric study has been conducted to investigate particle deposition on solid surfaces during free convection flow in an internally heated and cooled square cavity filled with air. The cavity walls are insulated while several pairs of heaters and coolers (HACs) inside the cavity lead to free convection flow. The HACs are assumed to be isothermal heat source and sinks with temperatures T-h and T-c (T-h > T-c). The problem is numerically investigated using the Eulerian-Lagrangian method. Two-dimensional Navier-Stokes and energy equations are solved using finite volume discretization method. Applying the Lagrangian approach, 5000 particles, distributed randomly in the enclosure, were …


Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz Jan 2015

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz

Jonathan C. Claussen

Enzymes provide the critical means by which to catalyze almost all biological reactions in a controlled manner. Methods to harness and exploit their properties are of strong current interest to the growing field of biotechnology. In contrast to depending upon recombinant genetic approaches, a growing body of evidence suggests that apparent enzymatic activity can be enhanced when located at a nanoparticle interface. We use semiconductor quantum dots (QDs) as a well-defined and easily bioconjugated nanoparticle along with Escherichia coli-derived alkaline phosphatase (AP) as a prototypical enzyme to seek evidence for this process in a de novo model system. We began …