Open Access. Powered by Scholars. Published by Universities.®

Remote Sensing Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

Series

Global change

Articles 1 - 2 of 2

Full-Text Articles in Remote Sensing

Satellite Evidence Of Hurricane-Induced Phytoplankton Blooms In An Oceanic Desert, S. M. Babin, J. A. Carton, T. D. Dickey, J. D. Wiggert Jan 2004

Satellite Evidence Of Hurricane-Induced Phytoplankton Blooms In An Oceanic Desert, S. M. Babin, J. A. Carton, T. D. Dickey, J. D. Wiggert

CCPO Publications

The physical effects of hurricanes include deepening of the mixed layer and decreasing of the sea surface temperature in response to entrainment, curl-induced upwelling, and increased upper ocean cooling. However, the biological effects of hurricanes remain relatively unexplored. In this paper, we examine the passages of 13 hurricanes through the Sargasso Sea region of the North Atlantic during the years 1998 through 2001. Remotely sensed ocean color shows increased concentrations of surface chlorophyll within the cool wakes of the hurricanes, apparently in response to the injection of nutrients and/or biogenic pigments into the oligotrophic surface waters. This increase in post-storm …


New Evidence For Enhanced Ocean Primary Production Triggered By Tropical Cyclone, I. Lin, W. Timothy Liu, Chun-Chieh Wu, George T. F. Wong, Chuanmin Hu, Zhiqiang Chen, Wen-Der Liang, Yih Yang, Kon-Kee Liu Jan 2003

New Evidence For Enhanced Ocean Primary Production Triggered By Tropical Cyclone, I. Lin, W. Timothy Liu, Chun-Chieh Wu, George T. F. Wong, Chuanmin Hu, Zhiqiang Chen, Wen-Der Liang, Yih Yang, Kon-Kee Liu

OES Faculty Publications

[1] New evidence based on recent satellite data is presented to provide a rare opportunity in quantifying the long-speculated contribution of tropical cyclones to enhance ocean primary production. In July 2000, moderate cyclone Kai-Tak passed over the South China Sea (SCS). During its short 3-day stay, Kai-Tak triggered an average 30-fold increase in surface chlorophyll-a concentration. The estimated carbon fixation resulting from this event alone is 0.8 Mt, or 2-4% of SCS's annual new production. Given an average of 14 cyclones passing over the SCS annually, we suggest the long-neglected contribution of tropical cyclones to SCS's annual new production may …