Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Social and Behavioral Sciences

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu Mar 2024

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu

Research Collection School Of Computing and Information Systems

Existing neural heuristics for multiobjective vehicle routing problems (MOVRPs) are primarily conditioned on instance context, which failed to appropriately exploit preference and problem size, thus holding back the performance. To thoroughly unleash the potential, we propose a novel conditional neural heuristic (CNH) that fully leverages the instance context, preference, and size with an encoder–decoder structured policy network. Particularly, in our CNH, we design a dual-attention-based encoder to relate preferences and instance contexts, so as to better capture their joint effect on approximating the exact Pareto front (PF). We also design a size-aware decoder based on the sinusoidal encoding to explicitly …


Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao Jan 2024

Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao

Research Collection School Of Computing and Information Systems

This paper studies the problem in transportation networks and introduces a novel reinforcement learning-based algorithm, namely. Different from almost all canonical sota solutions, which are usually computationally expensive and lack generalizability to unforeseen destination nodes, segac offers the following appealing characteristics. segac updates the ego vehicle’s navigation policy in a sample efficient manner, reduces the variance of both value network and policy network during training, and is automatically adaptive to new destinations. Furthermore, the pre-trained segac policy network enables its real-time decision-making ability within seconds, outperforming state-of-the-art sota algorithms in simulations across various transportation networks. We also successfully deploy segac …