Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Social and Behavioral Sciences

Neural Mechanisms Of The Rejection-Aggression Link, David S. Chester, Donald R. Lynam, Richard Milich, C. Nathan Dewall May 2018

Neural Mechanisms Of The Rejection-Aggression Link, David S. Chester, Donald R. Lynam, Richard Milich, C. Nathan Dewall

Psychology Faculty Publications

Social rejection is a painful event that often increases aggression. However, the neural mechanisms of this rejection–aggression link remain unclear. A potential clue may be that rejected people often recruit the ventrolateral prefrontal cortex’s (VLPFC) self-regulatory processes to manage the pain of rejection. Using functional MRI, we replicated previous links between rejection and activity in the brain’s mentalizing network, social pain network and VLPFC. VLPFC recruitment during rejection was associated with greater activity in the brain’s reward network (i.e. the ventral striatum) when individuals were given an opportunity to retaliate. This retaliation-related striatal response was associated with greater levels of …


Elevated Stearoyl-Coa Desaturase In Brains Of Patients With Alzheimer's Disease, Giuseppe Astarita, Kwang-Mook Jung, Vitaly Vasilevko, Nicholas V. Dipatrizio, Sarah K. Martin, David H. Cribbs, Elizabeth Head, Carl W. Cotman, Daniele Piomelli Oct 2011

Elevated Stearoyl-Coa Desaturase In Brains Of Patients With Alzheimer's Disease, Giuseppe Astarita, Kwang-Mook Jung, Vitaly Vasilevko, Nicholas V. Dipatrizio, Sarah K. Martin, David H. Cribbs, Elizabeth Head, Carl W. Cotman, Daniele Piomelli

Sanders-Brown Center on Aging Faculty Publications

The molecular bases of Alzheimer's disease (AD) remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37) compared to age-matched controls (N = 17). The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs) and mead acid (20:3n-9) in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b), were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio ('desaturation index')--displayed a strong …