Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Selected Works

2012

Extracellular Protein Homeostasis

Articles 1 - 2 of 2

Full-Text Articles in Social and Behavioral Sciences

The Extracellular Chaperone Clusterin Sequesters Oligomeric Forms Of The Amyloid-Beta 1-40 Peptide, Priyanka Narayan, Angel Orte, Richard Clarke, Benedetta Bolognesi, Sharon Hook, Kristina Ganzinger, Sarah Meehan, Mark Wilson, Christopher Dobson, David Klenerman Dec 2011

The Extracellular Chaperone Clusterin Sequesters Oligomeric Forms Of The Amyloid-Beta 1-40 Peptide, Priyanka Narayan, Angel Orte, Richard Clarke, Benedetta Bolognesi, Sharon Hook, Kristina Ganzinger, Sarah Meehan, Mark Wilson, Christopher Dobson, David Klenerman

Mark R Wilson

In recent genome-wide association studies, the extracellular chaperone protein, clusterin, has been identified as a newly-discovered risk factor in Alzheimer's disease. We have examined the interactions between human clusterin and the Alzheimer's disease-associated amyloid-β 1-40 peptide (Aβ 1-40), which is prone to aggregate into an ensemble of oligomeric intermediates implicated in both the proliferation of amyloid fibrils and in neuronal toxicity. Using highly sensitive single-molecule fluorescence methods, we have found that Aβ 1-40 forms a heterogeneous distribution of small oligomers (from dimers to 50-mers), all of which interact with clusterin to form long-lived, stable complexes. Consequently, clusterin is able to …


Amyloid-Β Oligomers Are Sequestered By Both Intracellular And Extracellular Chaperones, P Narayan, Sarah Meehan, John Carver, Mark Wilson, C M Dobson, D Klenerman Dec 2011

Amyloid-Β Oligomers Are Sequestered By Both Intracellular And Extracellular Chaperones, P Narayan, Sarah Meehan, John Carver, Mark Wilson, C M Dobson, D Klenerman

Mark R Wilson

The aberrant aggregation of the amyloid-β peptide into β-sheet rich, fibrillar structures proceeds via a heterogeneous ensemble of oligomeric intermediates that have been associated with neurotoxicity in Alzheimer’s disease (AD). Of particular interest in this context are the mechanisms by which molecular chaperones, part of the primary biological defenses against protein misfolding, influence Aβ aggregation. We have used single-molecule fluorescence techniques to compare the interactions between distinct aggregation states (monomers, oligomers, and amyloid fibrils) of the AD-associated amyloid-β(1–40) peptide, and two molecular chaperones, both of which are upregulated in the brains of patients with AD and have been found colocalized …