Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Social and Behavioral Sciences

Hydrological Drought Forecasting Using A Deep Transformer Model, Amobichukwu C. Amanambu, Joann Mossa, Yin-Hsuen Chen Nov 2022

Hydrological Drought Forecasting Using A Deep Transformer Model, Amobichukwu C. Amanambu, Joann Mossa, Yin-Hsuen Chen

University Administration Publications

Hydrological drought forecasting is essential for effective water resource management planning. Innovations in computer science and artificial intelligence (AI) have been incorporated into Earth science research domains to improve predictive performance for water resource planning and disaster management. Forecasting of future hydrological drought can assist with mitigation strategies for various stakeholders. This study uses the transformer deep learning model to forecast hydrological drought, with a benchmark comparison with the long short-term memory (LSTM) model. These models were applied to the Apalachicola River, Florida, with two gauging stations located at Chattahoochee and Blountstown. Daily stage-height data from the period 1928–2022 were …


Deep Learning Applications In Industrial And Systems Engineering, Winthrop Harvey Aug 2022

Deep Learning Applications In Industrial And Systems Engineering, Winthrop Harvey

Graduate Theses and Dissertations

Deep learning - the use of large neural networks to perform machine learning - has transformed the world. As the capabilities of deep models continue to grow, deep learning is becoming an increasingly valuable and practical tool for industrial engineering. With its wide applicability, deep learning can be turned to many industrial engineering tasks, including optimization, heuristic search, and functional approximation. In this dissertation, the major concepts and paradigms of deep learning are reviewed, and three industrial engineering projects applying these methods are described. The first applies a deep convolutional network to the task of absolute aerial geolocalization - the …


Landslide Detection In The Himalayas Using Machine Learning Algorithms And U-Net, Sansar Raj Meena, Lucas Pedrosa Soares, Carlos H. Grohmann, Cees Van Westen, Kushanav Bhuyan, Ramesh P. Singh, Mario Floris, Filippo Catani Feb 2022

Landslide Detection In The Himalayas Using Machine Learning Algorithms And U-Net, Sansar Raj Meena, Lucas Pedrosa Soares, Carlos H. Grohmann, Cees Van Westen, Kushanav Bhuyan, Ramesh P. Singh, Mario Floris, Filippo Catani

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Event-based landslide inventories are essential sources to broaden our understanding of the causal relationship between triggering events and the occurring landslides. Moreover, detailed inventories are crucial for the succeeding phases of landslide risk studies like susceptibility and hazard assessment. The openly available inventories differ in the quality and completeness levels. Event-based landslide inventories are created based on manual interpretation, and there can be significant differences in the mapping preferences among interpreters. To address this issue, we used two different datasets to analyze the potential of U-Net and machine learning approaches for automated landslide detection in the Himalayas. Dataset-1 is composed …


Deep Learning Of High-Resolution Aerial Imagery For Coastal Marsh Change Detection: A Comparative Study, Grayson R. Morgan, Cuizhen Wang, Zhenlong Li, Steven R. Schill, Daniel R. Morgan Feb 2022

Deep Learning Of High-Resolution Aerial Imagery For Coastal Marsh Change Detection: A Comparative Study, Grayson R. Morgan, Cuizhen Wang, Zhenlong Li, Steven R. Schill, Daniel R. Morgan

Faculty Publications

Deep learning techniques are increasingly being recognized as effective image classifiers. Aside from their successful performance in past studies, the accuracies have varied in complex environments, in comparison with the popularly of applied machine learning classifiers. This study seeks to explore the feasibility of using a U-Net deep learning architecture to classify bi-temporal, high-resolution, county-scale aerial images to determine the spatial extent and changes of land cover classes that directly or indirectly impact tidal marsh. The image set used in the analysis is a collection of a 1-m resolution collection of National Agriculture Imagery Program (NAIP) tiles from 2009 and …


Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li Jan 2022

Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li

Electrical & Computer Engineering Faculty Publications

Different satellite images may consist of variable numbers of channels which have different resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have 1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal temporal remote sensing image fusion. The proposed model takes both low- and high-resolution remote sensing images at t1 together with low-resolution images at a …