Open Access. Powered by Scholars. Published by Universities.®

Water Resource Management Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Plants, Soils, and Climate Faculty Publications

Subsurface

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Water Resource Management

Numerical Evaluation Of Subsurface Soil Water Evaporation Derived From Sensible Heat Balance, Masaru Sakai, Scott B. Jones, Markus Tuller Feb 2011

Numerical Evaluation Of Subsurface Soil Water Evaporation Derived From Sensible Heat Balance, Masaru Sakai, Scott B. Jones, Markus Tuller

Plants, Soils, and Climate Faculty Publications

A recently introduced measurement approach allows in situ determination of subsurface soil water evaporation by means of heat-pulse probes (HPP). The latent heat component of subsurface evaporation is estimated from the residual of the sensible heat balance. This heat balance method requires measurement of vertical soil temperature and estimates of thermal properties for soil water evaporation determination. Our objective was to employ numerically simulated thermal and hydraulic processes using constant or diurnally cycled surface boundary conditions to evaluate and understand this technique. Three observation grid spacings, namely, 6 mm (tri-needle HPP), 3 mm (penta-needle HPP) and 1 mm, along with …


Geophysical Imaging Of Watershed Subsurface Patterns And Prediction Of Soil Texture And Water Holding Capacity, H. Abdu, D. A. Robinson, M. Seyfried, Scott B. Jones Apr 2008

Geophysical Imaging Of Watershed Subsurface Patterns And Prediction Of Soil Texture And Water Holding Capacity, H. Abdu, D. A. Robinson, M. Seyfried, Scott B. Jones

Plants, Soils, and Climate Faculty Publications

The spatial distribution of subsurface soil textural properties across the landscape is an important control on the hydrological and ecological function of a watershed. Traditional methods of mapping soils involving subjective assignment of soil boundaries are inadequate for studies requiring a quantitative assessment of the landscape and its subsurface connectivity and storage capacity. Geophysical methods such as electromagnetic induction (EMI) provide the possibility of obtaining high-resolution images across a landscape to identify subtle changes in subsurface soil patterns. In this work we show how EMI can be used to image the subsurface of a ∼38 ha watershed. We present an …