Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Publications (WR)

Limnology

Articles 1 - 8 of 8

Full-Text Articles in Environmental Health and Protection

Nutrient Limitation In A Southwestern Desert Reservoir: Eutrophication Of Las Vegas Bay, Lake Mead, Nevada, Davine M. Lieberman Sep 1995

Nutrient Limitation In A Southwestern Desert Reservoir: Eutrophication Of Las Vegas Bay, Lake Mead, Nevada, Davine M. Lieberman

Publications (WR)

Algal bioassay tests were conducted with Selenastrum capricornutum and natural algae on inner Las Vegas Bay, Lake Mead, Nevada, from December 1992 through September 1993, to identify any nutrient limitation in an area of the reservoir that has experienced problems associated with severe nutrient enrichment. Three areas were sampled based on a gradient of water quality conditions that existed in Las Vegas Bay (LVB). Disodium ethylenedinitrilotetraacetate (EDTA) significantly stimulated algal growth compared to non-EDTA treatment. Algal bioassays indicated that phosphorus (P) was the primary limiting nutrient at all stations for most of the test dates. Chl a response with EDTA …


Limnological Monitoring Data For Lake Mead During 1987: Technical Report No. 20, Larry J. Paulson Jan 1988

Limnological Monitoring Data For Lake Mead During 1987: Technical Report No. 20, Larry J. Paulson

Publications (WR)

Limnological monitoring was conducted in Las Vegas Bay and Boulder Basin from April to December of 1987. The purpose of the monitoring was to (i) document possible changes in water quality resulting from decreased phosphorus loading in Las Vegas Wash, and (ii) establish a data base for evaluating the adequacy of water quality standards.


Las Vegas Wash And Lake Mead Proposed Water Quality Standards: Revisions And Rationale, State Of Nevada: Division Of Environmental Protection May 1987

Las Vegas Wash And Lake Mead Proposed Water Quality Standards: Revisions And Rationale, State Of Nevada: Division Of Environmental Protection

Publications (WR)

Rationale of review and for proposed changes to the Nevada Pollution Control Regulations (NAC 445.1354, 445.1355, 445.1356, 455.1367, 445.1352, 445.1353, 445.1350, 445.1351) before the State Environmental Commission on June 23 and 24, 1987.


A Proposal To Fertilize The Overton Arm And Gregg Basin Areas Of Lake Mead, Larry J. Paulson Nov 1984

A Proposal To Fertilize The Overton Arm And Gregg Basin Areas Of Lake Mead, Larry J. Paulson

Publications (WR)

Several limnological studies have been conducted in Lake Mead during the past decade. The recent studies clearly show that most of Lake Mead is deficient in nutrients, especially phosphorus, and very low in productivity. The reservoir-wide average total phosphorus concentration for 1981 - 1982 was only 9 mg/m3. This is below levels found In most oligotrophic lakes and reservoirs. Algal biomass, as measured by chlorophyll-a, averaged only 1.5 mg/m3. That also places Lake Mead in the oligotrophic range. Transparency, as measured by a Secchi disc, averaged 9-5 m in Lake Mead during 1981-1982. That far exceeds …


Las Vegas Wash Multispectral Scanner Survey, T. H. Mace, M. V. Olsen, Environmental Protection Agency Feb 1984

Las Vegas Wash Multispectral Scanner Survey, T. H. Mace, M. V. Olsen, Environmental Protection Agency

Publications (WR)

At the request of the U.S. Bureau of Reclamation, Boulder City, Nevada, the U.S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory at Las Vegas collected multispectral scanner imagery of Las Vegas Wash on October 1, 1982.

A combined maximum likelihood classification and editing procedure was used to classify the multispectral scanner imagery into 12 categories of land cover. The classification identified four categories of marsh vegetation, one category of riparian, two categories of mixed scrub, and two desert categories. Turbid water and cultivated land formed an "other" category. Area tabulations were formed by georeferencing the classification to the Universal Transverse …


The Effects Of Impoundments On Salinity In The Colorado River, Larry J. Paulson, John R. Baker Jan 1983

The Effects Of Impoundments On Salinity In The Colorado River, Larry J. Paulson, John R. Baker

Publications (WR)

The increase in salinity of our western rivers has been identified as one of the most serious water quality problems in the nation. This is of special concern in the Colorado River where salinity has increased from pristine levels estimated at 380 mg/1 to present-day levels of 825 mg/1 at Imperial Dam. Flow depletions, associated with decreased runoff and increased evaporation and diversions, coupled with high salt loading from natural and man-created sources are considered the primary causes for rising salinity in the river. The urban and agricultural development projected to occur in the basin through this century could deplete …


Water Quality Study Of Lake Mead, Dale A. Hoffman, Paul R. Tramutt, Frank C. Heller, Bureau Of Reclamation Nov 1967

Water Quality Study Of Lake Mead, Dale A. Hoffman, Paul R. Tramutt, Frank C. Heller, Bureau Of Reclamation

Publications (WR)

This report presents Lake Mead Water quality data obtained from 1964 to 1966. The effect of filling Lake Powell on the water quality of Lake Mead is evaluated. General limnological principles and the present limnology of Lake Mead are discussed. Lake Mead has a warm monomictic annual temperature cycle characterized by summer stratification, fall overturn leading into a continuous circulation throughout the winter; temperatures never fall below 39 deg F (4 deg C). During stratification, lower dissolved oxygen values were recorded in the thermocline than in the epilimnion and hypolimnion. Mineral content increases from the upper to the lower end …


Development, Verification, And Use Of Methods To Model Chemical And Thermal Processes Lakes Mead And Powell, Bureau Of Reclamation Jul 1966

Development, Verification, And Use Of Methods To Model Chemical And Thermal Processes Lakes Mead And Powell, Bureau Of Reclamation

Publications (WR)

PURPOSE

The purpose of the proposed research is to quantify the effects that Lakes Mead and Powell have on the salinity in the Colorado River system, and to evaluate changes that cap be made to the operating system of the reservoirs (within legal/institutional constraints) to enhance salt precipitation and/or minimize evaporation within the reservoirs. The effect of any changes (i.e., selective withdrawal uses, pumped storage, etc.) on reservoir evaporation could also be evaluated with a goal of minimizing evaporation. This will be accomplished through the development of a mathematical model of the reservoirs as described below.

BACKGROUND

Two major problems …