Open Access. Powered by Scholars. Published by Universities.®

Geology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Geology

Insights Into Planetesimal Evolution: Petrological Investigations Of Regolithic Howardites And Carbonaceous Chondrite Impact Melts, Nicole Gabriel Lunning Aug 2015

Insights Into Planetesimal Evolution: Petrological Investigations Of Regolithic Howardites And Carbonaceous Chondrite Impact Melts, Nicole Gabriel Lunning

Doctoral Dissertations

Asteroidal meteorites are the only available geologic samples from the early part of our solar system’s history. These meteorites contain evidence regarding how the earliest protoplanetary bodies formed and evolved. I use petrological and geochemical techniques to investigate the evolution of these early planetesimals, focusing on two meteorite types: Howardites, which are brecciated samples of a differentiated parent body (thought to be the asteroid 4 Vesta), and CV chondrites, which are primitive chondrites that have not undergone differentiation on their parent body.

Quantitative petrological analysis and characterization of paired regolithic (solar wind-rich) howardites indicate that this large sample of the …


Martian Dune Fields: Aeolian Activity, Morphology, Sediment Pathways, And Provenance, Matthew Chojnacki May 2013

Martian Dune Fields: Aeolian Activity, Morphology, Sediment Pathways, And Provenance, Matthew Chojnacki

Doctoral Dissertations

Wind has likely been the dominant geologic agent for most of Mars’ history. The wide-spread nature of sand dunes there shows that near-surface winds have commonly interacted with plentiful mobile sediments. Early studies of these dunes suggested minimal activity, dominantly unidirectional simple dune morphologies, and little variations in basaltic sand compositions. This dissertation examines martian sand dunes and aeolian systems, in terms of their activity, morphologies, thermophysical properties, sand compositions, geologic contexts, and source-lithologies using new higher-resolution orbital data. Although previous evidence for contemporary dune activity has been limited, results presented in Chapter II show substantial activity in Endeavour Crater, …


Characterizing Phyllosilicate Distribution, Abundance, And Origin On Mars, Christina Elizabeth Viviano May 2012

Characterizing Phyllosilicate Distribution, Abundance, And Origin On Mars, Christina Elizabeth Viviano

Doctoral Dissertations

Secondary phyllosilicates are hydrated minerals formed in the presence of liquid water. On Earth, their formation is often indicative of a neutral, water-rich environment, capable of supporting and preserving organic matter. Different phyllosilicate species may be produced in different pH levels and water-to-rock ratios. The identification of mineralogically diverse phyllosilicates in small, localized exposures on Mars provides a complex record of their formation processes. While discrete outcrops of phyllosilicates have been previously identified in high-resolution visible/near-infrared images of Mars, regional coverage of these phyllosilicate-rich areas at better resolution is limited. Furthermore, spectra of minerals in this wavelength range do not …


Constraining Martian Sedimentation Via Analysis Of Stratal Packaging, Intracrater Layered Deposits, Arabia Terra, Mars, Sarah Beth Cadieux May 2011

Constraining Martian Sedimentation Via Analysis Of Stratal Packaging, Intracrater Layered Deposits, Arabia Terra, Mars, Sarah Beth Cadieux

Masters Theses

Craters within Arabia Terra, Mars, contain hundreds of meters of layered strata

showing systematic alternation between slope- and cliff-forming units, suggesting either

rhythmic deposition of distinct lithologies or lithologies that experienced differential

cementation. Hypothesized origins of these intercrater layered deposits include

lacustrine, aeolian, volcanic airfall, and impact surge deposition. On Earth, rhythmically

deposited strata can be examined in terms of stratal packaging, wherein the interplay of

tectonics, sediment deposition, and change in base level results in predictable patterns

with respect to changes in the amount of space available for sediment accumulation.

Fundamental differences between tectonic regimes of Earth and Mars …