Open Access. Powered by Scholars. Published by Universities.®

Geology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Geology

Earthquake And Tsunami Forecasts: Relation Of Slow Slip Events To Subsequent Earthquake Rupture, Timothy H. Dixon, Yan Jiang, Rocco Malservisi, Robert Mccaffrey, Nicholas Voss, Marino Protti, Victor Gonzalez Dec 2014

Earthquake And Tsunami Forecasts: Relation Of Slow Slip Events To Subsequent Earthquake Rupture, Timothy H. Dixon, Yan Jiang, Rocco Malservisi, Robert Mccaffrey, Nicholas Voss, Marino Protti, Victor Gonzalez

Geology Faculty Publications and Presentations

The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to …


Interseismic Locking On The Hikurangi Subduction Zone: Uncertainties From Slow-Slip Events, Robert Mccaffrey Oct 2014

Interseismic Locking On The Hikurangi Subduction Zone: Uncertainties From Slow-Slip Events, Robert Mccaffrey

Geology Faculty Publications and Presentations

lnterseismic locking on the Hikurangi subduction zone in New Zealand is examined in light of alternative assumed locking distributions and the impact of transients (slow-slip and volcanic sources) on temporal and spatial resolution. The modern pattern of locking in the north is poorly resolved and, based on simulations of possible transient behavior, may be an ephemeral feature of the subduction cycle. While there appears to be some contemporary locking in the northern half of the Hikurangi subduction zone (HSZ), its location is model dependent, and hence, its relationship to structure, slow-slip, or any transition zone there is unclear. Simulations of …


Large-Scale Fluidization Features From Late Holocene Coseismic Paleoliquefaction In The Willamette River Forearc Valley, Central Cascadia Subduction Zone, Oregon, Usa, Curt D. Peterson, Kurt Kristensen, Rick Minor Jan 2014

Large-Scale Fluidization Features From Late Holocene Coseismic Paleoliquefaction In The Willamette River Forearc Valley, Central Cascadia Subduction Zone, Oregon, Usa, Curt D. Peterson, Kurt Kristensen, Rick Minor

Geology Faculty Publications and Presentations

A search of Willamette River cutbanks was conducted for the presence of late Holocene paleoli-quefaction records in the Willamette forearc valley, located 175 ± 25 km landward from the buried trench in the central Cascadia subduction zone. A search of Willamette River cutbanks was conducted for the presence of late Holocene paleoli-quefaction records in the Willamette forearc valley, located 175 ± 25 km landward from the buried trench in the central Cascadia subduction zone. Eight cutbank sites are reported that show evidence of large-scale fluidization features (≥10 cm width) including clastic sand dikes and intruded sand sills in Holocene overbank …


Central Cascadia Subduction Zone Creep, Gina M. Schmalzle, Robert Mccaffrey, Kenneth C. Creager Jan 2014

Central Cascadia Subduction Zone Creep, Gina M. Schmalzle, Robert Mccaffrey, Kenneth C. Creager

Geology Faculty Publications and Presentations

Central Cascadia between 43ºN and 46ºN has reduced interseismic uplift observed in geodetic data and coseismic subsidence seen in multiple thrust earthquakes, suggesting elevated persistent fault creep in this section of the subduction zone. We estimate subduction thrust "decade-scale" locking and crustal block rotations from three-component continuous Global Positioning System (GPS) time series from 1997 to 2013, as well as 80 year tide gauge and leveling-derived uplift rates. Geodetic observations indicatecoastal central Oregon is rising at a slower rate than coastal Washington, southern Oregon and northern California. Modeled locking distributions suggest a wide locking transition zone that extends inland undercentral …