Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Water

2013

Gordon Wallace

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Catalytic Solar Water Splitting Inspired By Photosynthesis. Homogeneous Catalysts With A Mechanical ("Machine-Like") Action, Gerhard F. Swiegers, G Charles Dismukes, Leone Spiccia, Robin Brimblecombe, Annette Koo, Jun Chen, Gordon G. Wallace Mar 2013

Catalytic Solar Water Splitting Inspired By Photosynthesis. Homogeneous Catalysts With A Mechanical ("Machine-Like") Action, Gerhard F. Swiegers, G Charles Dismukes, Leone Spiccia, Robin Brimblecombe, Annette Koo, Jun Chen, Gordon G. Wallace

Gordon Wallace

Chemical reactions may be controlled by either: the minimum threshold energy that must be overcome during collisions between reactant molecules / atoms (the Activation Energy, Ea), or: the rate at which reactant collisions occur (the Collision Frequency, A) (for reactions with low Ea). Reactions of type (2) are governed by the physical, mechanical interaction of the reactants. Such mechanical processes are unusual, but not unknown in molecular catalysts. We examine the catalytic action and macroscopic properties of several abiological mechanical catalysts and show that they display distinct similarities to enzymes in general. An abiological model of the Photosystem II Water …


Conducting Polymers With Fibrillar Morphology Synthesized In A Biphasic Ionic Liquid/Water System, J.M. Pringle, Orawan Ngamna, Carol M. Lynam, Gordon G. Wallace, Maria Forsyth, Douglas Macfarlane Mar 2013

Conducting Polymers With Fibrillar Morphology Synthesized In A Biphasic Ionic Liquid/Water System, J.M. Pringle, Orawan Ngamna, Carol M. Lynam, Gordon G. Wallace, Maria Forsyth, Douglas Macfarlane

Gordon Wallace

The synthesis of poly(pyrrole), poly(terthiophene), and poly(3,4-ethylenedioxythiophene) with unusual fibrillar morphologies has been achieved by chemical polymerization in a biphasic ionic liquid/water system. Use of aqueous gold chloride as the oxidant, with the monomers dissolved in a hydrophobic ionic liquid, allows the polymerization to occur at the ionic liquid/water interface. The resultant conducting polymer fibrils are, on average, 50−100 nm wide and can be thousands of nanometers long. The polymers produced in this ionic liquid system are compared to those synthesized in a biphasic chloroform/water system.