Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Snore: An Intuitive Algorithm For Accurately Simulating N-Body Orbits, Connor L. Nance Apr 2021

Snore: An Intuitive Algorithm For Accurately Simulating N-Body Orbits, Connor L. Nance

Honors College Theses

We present SnOrE (Simple n-body Orbital Engine), a Python package which aims to simulate n-body orbital systems while simultaneously overcoming early educational barriers of computational astrodynamics for undergraduate physics students. SnOrE exploits rudimentary syntax and commonly-understood Python libraries to accurately simulate orbits of systems, given initial position and momentum conditions of each body in the system. As the n-body problem is as of yet unsolvable theoretically for n ≥ 3, having a numerical perspective on complicated orbits is of great importance to potentially understanding the processes of star and planet formation. Especially significant examples of this research …


Mathematical Models For Infectious Disease Transmission With Stochastic Simulation Of Measles Outbreaks, Valerie Welty Apr 2016

Mathematical Models For Infectious Disease Transmission With Stochastic Simulation Of Measles Outbreaks, Valerie Welty

Honors College Theses

As they are the leading cause of death among children and adolescents worldwide, it is of extreme importance to control the spread of infectious diseases. Information gained from mathematical modeling of these events often proves quite useful in establishing policy decisions to accomplish this goal. Human behavior, however, is quite difficult to recreate when using equations with pre-determined results, such as deterministic differential equations often used with epidemic models. Because of this, the focus of the research was to create a simulation of an outbreak, specifically of measles, by using an imaginary population experiencing simulated stochastic events on a discrete …