Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Simulation

Astrophysics and Astronomy

Dartmouth College

Publication Year

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Optical Counterparts Of Two Fermi Millisecond Pulsars: Psr J1301+0833 And Psr J1628–3205, Miao Li, Jules P. Halpern, John R. Thorstensen Oct 2014

Optical Counterparts Of Two Fermi Millisecond Pulsars: Psr J1301+0833 And Psr J1628–3205, Miao Li, Jules P. Halpern, John R. Thorstensen

Dartmouth Scholarship

Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a "redback," a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range …


The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox Dec 2013

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox

Dartmouth Scholarship

We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGN in cosmological simulations. At the median redshift of z~1.2, we derive a median mass of (1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to more bolometrically luminous, optically-selected quasars at similar redshift. The modeling …


The Fast And Furious Decay Of The Peculiar Type Ic Supernova 2005ek, M. R. Drout, A. M. Soderberg, P. A. Mazzali, J. T. Parrent Aug 2013

The Fast And Furious Decay Of The Peculiar Type Ic Supernova 2005ek, M. R. Drout, A. M. Soderberg, P. A. Mazzali, J. T. Parrent

Dartmouth Scholarship

We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of MR = –17.3 and decaying by ~3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of ~0.3 M that is dominated by oxygen (~80%), while the pseudo-bolometric light …


Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos Aug 2010

Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos

Dartmouth Scholarship

Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, …


Perpendicular Ion Heating By Low-Frequency Alfvén-Wave Turbulence In The Solar Wind, Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers, Eliot Quataert, Kai Germaschewski Aug 2010

Perpendicular Ion Heating By Low-Frequency Alfvén-Wave Turbulence In The Solar Wind, Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers, Eliot Quataert, Kai Germaschewski

Dartmouth Scholarship

We consider ion heating by turbulent Alfvén waves (AWs) and kinetic Alfvén waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller than the ion cyclotron frequency Ω. We focus on plasmas in which β < 1, where β is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity ε = δv ρ/v , where v (v ) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0, and δv ρB ρ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case …


Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson Jun 2010

Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson

Dartmouth Scholarship

X-ray observations of clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as "cold fronts." In relaxed clusters with cool cores, these commonly observed edges have been interpreted as evidence for the "sloshing" of the core gas in the cluster's gravitational potential. Such sloshing may provide a source of heat to the cluster core by mixing hot gas from the cluster outskirts with the cool-core gas. Using high-resolution N-body/Eulerian hydrodynamic simulations, we model gas sloshing in galaxy clusters initiated by mergers with subclusters. The simulations include merger scenarios with gas-filled and gasless subclusters. The …


Core Gas Sloshing In Abell 1644, Ryan E. Johnson, Maxim Markevitch, Gary A. Wegner, Christine Jones, William R. Forman Feb 2010

Core Gas Sloshing In Abell 1644, Ryan E. Johnson, Maxim Markevitch, Gary A. Wegner, Christine Jones, William R. Forman

Dartmouth Scholarship

We present an analysis of a 72 ks Chandra observation of the double cluster Abell 1644 (z = 0.047). The X-ray temperatures indicate that the masses are M 500 = (2.6 ± 0.4) × 1014 h –1 M for the northern sub-cluster and M 500 = (3.1 ± 0.4) × 1014 h –1 M for the southern, main cluster. We identify a sharp edge in the radial X-ray surface brightness of the main cluster, which we find to be a cold front, with a jump in temperature of a factor of ~3. This edge possesses …


Large Scale Structure As A Probe Of Gravitational Slip, Scott F. Daniel, Robert R. Caldwell, Asantha Cooray, Alessandro Melchiorri May 2008

Large Scale Structure As A Probe Of Gravitational Slip, Scott F. Daniel, Robert R. Caldwell, Asantha Cooray, Alessandro Melchiorri

Dartmouth Scholarship

A new time-dependent, scale-independent parameter, ϖ, is employed in a phenomenological model of the deviation from general relativity in which the Newtonian and longitudinal gravitational potentials slip apart on cosmological scales as dark energy, assumed to be arising from a new theory of gravitation, appears to dominate the Universe. A comparison is presented between ϖ and other parametrized post-Friedmannian models in the literature. The effect of ϖ on the cosmic microwave background anisotropy spectrum, the growth of large-scale structure, the galaxy weak-lensing correlation function, and cross correlations of cosmic microwave background anisotropy with galaxy clustering are illustrated. Cosmological models with …