Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Photosynthesis

Life Sciences

Chapman University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Evolutionary Responses Of Invasive Grass Species To Variation In Precipitation And Soil Nitrogen, Monica A. Nguyen, Amy E. Ortega, Quoc L. Nguyen, Sarah Kimball, Michael L. Goulden, Jennifer L. Funk Apr 2016

Evolutionary Responses Of Invasive Grass Species To Variation In Precipitation And Soil Nitrogen, Monica A. Nguyen, Amy E. Ortega, Quoc L. Nguyen, Sarah Kimball, Michael L. Goulden, Jennifer L. Funk

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

1.Global climate models suggest that many ecosystems will experience reduced precipitation over the next century and the consequences for invasive plant performance are largely unknown. Annual invasive species may be able to quickly evolve traits associated with drought escape or tolerance through rapid genetic changes.

2.We investigated the influence of five years of water and nitrogen manipulations on trait values in a southern California grassland system. Seeds from two annual grass species (Avena barbata, Bromus madritensis) were collected from experimental plots and grown in a common environment over two generations. We measured 14 physiological, morphological, phenological, and …


Coupling Coherence Distinguishes Structure Sensitivity In Protein Electron Transfer, Tatiana Prytkova, Igor V. Kurnikov, David Beratan Jan 2007

Coupling Coherence Distinguishes Structure Sensitivity In Protein Electron Transfer, Tatiana Prytkova, Igor V. Kurnikov, David Beratan

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quantum mechanical analysis of electron tunneling in nine thermally fluctuating cytochrome b562 derivatives reveals two distinct protein-mediated coupling limits. A structure-insensitive regime arises for redox partners coupled through dynamically averaged multiple-coupling pathways (in seven of the nine derivatives) where heme-edge coupling leads to the multiple-pathway regime. A structure-dependent limit governs redox partners coupled through a dominant pathway (in two of the nine derivatives) where axial-ligand coupling generates the single-pathway limit and slower rates. This two-regime paradigm provides a unified description of electron transfer rates in 26 ruthenium-modified heme and blue-copper proteins, as well as in numerous photosynthetic proteins.