Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang May 2019

Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang

Senior Theses

Controlled mechanical motion is vital in many useful applications in technology. Among them, linear motors have advantages over traditional rotating motors. In this work, we built a permanent magnet linear motor to test and measure its energy efficiency. A maximum 29% total energy efficiency, and 67% energy transfer rate, were detected. In addition, a C-shape support structure was added to the moving part in order to increase the moving accuracy. The tests show that, with the support structure, the fluctuation in the vertical direction decreases significantly, but the friction of the system slightly increases.


Studies Of Breakdown In A Pressurized Rf Cavity, M. Bastaninejad, A. A. Elmustafa, C. M. Ankenbrandt, A. Moretti, M. Popovic, K. Yonehara, D. M. Kaplan, M. Alsharo'a, P. M. Hanlet, R. P. Johnson, M. Kuchnir, D. Newsham, D. V. Rose, C. Thoma, D. R. Welch Jan 2008

Studies Of Breakdown In A Pressurized Rf Cavity, M. Bastaninejad, A. A. Elmustafa, C. M. Ankenbrandt, A. Moretti, M. Popovic, K. Yonehara, D. M. Kaplan, M. Alsharo'a, P. M. Hanlet, R. P. Johnson, M. Kuchnir, D. Newsham, D. V. Rose, C. Thoma, D. R. Welch

Mechanical & Aerospace Engineering Faculty Publications

Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments [1] have been used to investigate the mechanism of RF breakdown [2]. The images show evidence for melting and boiling in small regions of ∼10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces …