Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu Apr 2005

A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu

All HMC Faculty Publications and Research

In this paper, we propose and analyze a mathematical model, in the form of a system of ordinary differential equations, governing mutated strains of human immunodeficiency virus (HIV) and their interactions with the immune system and treatments. Our model incorporates two types of resistant mutations: strains that are not responsive to protease inhibitors, and strains that are not responsive to reverse transcriptase inhibitors. It also includes strains that do not have either of these two types of resistance (wild-type virus) and strains that have both types. We perform our analysis by changing the system of ordinary differential equations (ODEs) to …


Error Analysis Of Variable Degree Mixed Methods For Elliptic Problems Via Hybridization, Bernardo Cockburn, Jay Gopalakrishnan Mar 2005

Error Analysis Of Variable Degree Mixed Methods For Elliptic Problems Via Hybridization, Bernardo Cockburn, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

A new approach to error analysis of hybridized mixed methods is proposed and applied to study a new hybridized variable degree Raviart-Thomas method for second order elliptic problems. The approach gives error estimates for the Lagrange multipliers without using error estimates for the other variables. Error estimates for the primal and flux variables then follow from those for the Lagrange multipliers. In contrast, traditional error analyses obtain error estimates for the flux and primal variables first and then use it to get error estimates for the Lagrange multipliers. The new approach not only gives new error estimates for the new …


A Topological Approach To Nonlinear Analysis, Wendy Ann Peske Jan 2005

A Topological Approach To Nonlinear Analysis, Wendy Ann Peske

Theses Digitization Project

A topological approach to nonlinear analysis allows for strikingly beautiful proofs and simplified calculations. This topological approach employs many of the ideas of continuous topology, including convergence, compactness, metrization, complete metric spaces, uniform spaces and function spaces. This thesis illustrates using the topological approach in proving the Cauchy-Peano Existence theorem. The topological proof utilizes the ideas of complete metric spaces, Ascoli-Arzela theorem, topological properties in Euclidean n-space and normed linear spaces, and the extension of Brouwer's fixed point theorem to Schauder's fixed point theorem, and Picard's theorem.


Math, Music, And Membranes: A Historical Survey Of The Question "Can One Hear The Shape Of A Drum"?, Tricia Dawn Mccorkle Jan 2005

Math, Music, And Membranes: A Historical Survey Of The Question "Can One Hear The Shape Of A Drum"?, Tricia Dawn Mccorkle

Theses Digitization Project

In 1966 Mark Kac posed an interesting question regarding vibrating membranes and the sounds they make. His article entitled "Can One Hear the Shape of a Drum?", which appeared in The American Mathematical Monthly, generated much interest and scholarly debate. The evolution of Kac's intriguing question will be the subject of this project.


Nédélec Spaces In Affine Coordinates, Jay Gopalakrishnan, Luis E. García-Castillo, Leszek Demkowicz Jan 2005

Nédélec Spaces In Affine Coordinates, Jay Gopalakrishnan, Luis E. García-Castillo, Leszek Demkowicz

Mathematics and Statistics Faculty Publications and Presentations

In this note, we provide a conveniently implementable basis for simplicial Nédélec spaces of any order in any space dimension. The main feature of the basis is that it is expressed solely in terms of the barycentric coordinates of the simplex.