Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

St-V-Net: Incorporating Shape Prior Into Convolutional Neural Netwoks For Proximal Femur Segmentation, Chen Zhao, Joyce H. Keyak, Jinshan Tang, Tadashi S. Kaneko, Sundeep Khosla, Shreyasee Amin, Elizabeth J. Atkinson, Lan-Juan Zhao, Michael J. Serou, Chaoyang Zhang, Hui Shen, Hong-Wen Deng, Weihua Zhou Jun 2021

St-V-Net: Incorporating Shape Prior Into Convolutional Neural Netwoks For Proximal Femur Segmentation, Chen Zhao, Joyce H. Keyak, Jinshan Tang, Tadashi S. Kaneko, Sundeep Khosla, Shreyasee Amin, Elizabeth J. Atkinson, Lan-Juan Zhao, Michael J. Serou, Chaoyang Zhang, Hui Shen, Hong-Wen Deng, Weihua Zhou

Faculty Publications

We aim to develop a deep-learning-based method for automatic proximal femur segmentation in quantitative computed tomography (QCT) images. We proposed a spatial transformation V-Net (ST-V-Net), which contains a V-Net and a spatial transform network (STN) to extract the proximal femur from QCT images. The STN incorporates a shape prior into the segmentation network as a constraint and guidance for model training, which improves model performance and accelerates model convergence. Meanwhile, a multi-stage training strategy is adopted to fine-tune the weights of the ST-V-Net. We performed experiments using a QCT dataset which included 397 QCT subjects. During the experiments for the …


The Effects Of Individual Differences, Non‐Stationarity, And The Importance Of Data Partitioning Decisions For Training And Testing Of Eeg Cross‐Participant Models, Alexander J. Kamrud [*], Brett J. Borghetti, Christine M. Schubert Kabban May 2021

The Effects Of Individual Differences, Non‐Stationarity, And The Importance Of Data Partitioning Decisions For Training And Testing Of Eeg Cross‐Participant Models, Alexander J. Kamrud [*], Brett J. Borghetti, Christine M. Schubert Kabban

Faculty Publications

EEG-based deep learning models have trended toward models that are designed to perform classification on any individual (cross-participant models). However, because EEG varies across participants due to non-stationarity and individual differences, certain guidelines must be followed for partitioning data into training, validation, and testing sets, in order for cross-participant models to avoid overestimation of model accuracy. Despite this necessity, the majority of EEG-based cross-participant models have not adopted such guidelines. Furthermore, some data repositories may unwittingly contribute to the problem by providing partitioned test and non-test datasets for reasons such as competition support. In this study, we demonstrate how improper …


Defect Detection In Atomic Resolution Transmission Electron Microscopy Images Using Machine Learning, Philip Cho, Aihua W. Wood, Krishnamurthy Mahalingam, Kurt Eyink May 2021

Defect Detection In Atomic Resolution Transmission Electron Microscopy Images Using Machine Learning, Philip Cho, Aihua W. Wood, Krishnamurthy Mahalingam, Kurt Eyink

Faculty Publications

Point defects play a fundamental role in the discovery of new materials due to their strong influence on material properties and behavior. At present, imaging techniques based on transmission electron microscopy (TEM) are widely employed for characterizing point defects in materials. However, current methods for defect detection predominantly involve visual inspection of TEM images, which is laborious and poses difficulties in materials where defect related contrast is weak or ambiguous. Recent efforts to develop machine learning methods for the detection of point defects in TEM images have focused on supervised methods that require labeled training data that is generated via …