Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler Dec 2021

Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler

Computer Science and Computer Engineering Undergraduate Honors Theses

Sounds with a high level of stationarity, also known as sound textures, have perceptually relevant features which can be captured by stimulus-computable models. This makes texture-like sounds, such as those made by rain, wind, and fire, an appealing test case for understanding the underlying mechanisms of auditory recognition. Previous auditory texture models typically measured statistics from auditory filter bank representations, and the statistics they used were somewhat ad-hoc, hand-engineered through a process of trial and error. Here, we investigate whether a better auditory texture representation can be obtained via contrastive learning, taking advantage of the stationarity of auditory textures to …


Patchnet: Hierarchical Deep Learning-Based Stable Patch Identification For The Linux Kernel, Thong Hoang, Julia Lawall, Yuan Tian, Richard J. Oentaryo, David Lo Nov 2021

Patchnet: Hierarchical Deep Learning-Based Stable Patch Identification For The Linux Kernel, Thong Hoang, Julia Lawall, Yuan Tian, Richard J. Oentaryo, David Lo

Research Collection School Of Computing and Information Systems

Linux kernel stable versions serve the needs of users who value stability of the kernel over new features. The quality of such stable versions depends on the initiative of kernel developers and maintainers to propagate bug fixing patches to the stable versions. Thus, it is desirable to consider to what extent this process can be automated. A previous approach relies on words from commit messages and a small set of manually constructed code features. This approach, however, shows only moderate accuracy. In this paper, we investigate whether deep learning can provide a more accurate solution. We propose PatchNet, a hierarchical …


Computer-Aided Diagnosis Of Low Grade Endometrial Stromal Sarcoma (Lgess), Xinxin Yang, Mark Stamp Sep 2021

Computer-Aided Diagnosis Of Low Grade Endometrial Stromal Sarcoma (Lgess), Xinxin Yang, Mark Stamp

Faculty Research, Scholarly, and Creative Activity

Low grade endometrial stromal sarcoma (LGESS) accounts for about 0.2% of all uterine cancer cases. Approximately 75% of LGESS patients are initially misdiagnosed with leiomyoma, which is a type of benign tumor, also known as fibroids. In this research, uterine tissue biopsy images of potential LGESS patients are preprocessed using segmentation and stain normalization algorithms. We then apply a variety of classic machine learning and advanced deep learning models to classify tissue images as either benign or cancerous. For the classic techniques considered, the highest classification accuracy we attain is about 0.85, while our best deep learning model achieves an …


Automatic Fairness Testing Of Neural Classifiers Through Adversarial Sampling, Peixin Zhang, Jingyi Wang, Jun Sun, Xinyu Wang, Guoliang Dong, Xinggen Wang, Ting Dai, Jinsong Dong Sep 2021

Automatic Fairness Testing Of Neural Classifiers Through Adversarial Sampling, Peixin Zhang, Jingyi Wang, Jun Sun, Xinyu Wang, Guoliang Dong, Xinggen Wang, Ting Dai, Jinsong Dong

Research Collection School Of Computing and Information Systems

Although deep learning has demonstrated astonishing performance in many applications, there are still concerns about its dependability. One desirable property of deep learning applications with societal impact is fairness (i.e., non-discrimination). Unfortunately, discrimination might be intrinsically embedded into the models due to the discrimination in the training data. As a countermeasure, fairness testing systemically identifies discriminatory samples, which can be used to retrain the model and improve the model’s fairness. Existing fairness testing approaches however have two major limitations. Firstly, they only work well on traditional machine learning models and have poor performance (e.g., effectiveness and efficiency) on deep learning …


Pruning-Aware Merging For Efficient Multitask Inference, Dawei Gao, Xiaoxi He, Zimu Zhou, Yongxin Tong, Lothar Thiele Aug 2021

Pruning-Aware Merging For Efficient Multitask Inference, Dawei Gao, Xiaoxi He, Zimu Zhou, Yongxin Tong, Lothar Thiele

Research Collection School Of Computing and Information Systems

Many mobile applications demand selective execution of multiple correlated deep learning inference tasks on resource-constrained platforms. Given a set of deep neural networks, each pre-trained for a single task, it is desired that executing arbitrary combinations of tasks yields minimal computation cost. Pruning each network separately yields suboptimal computation cost due to task relatedness. A promising remedy is to merge the networks into a multitask network to eliminate redundancy across tasks before network pruning. However, pruning a multitask network combined by existing network merging schemes cannot minimise the computation cost of every task combination because they do not consider such …


Attack As Defense: Characterizing Adversarial Examples Using Robustness, Zhe Zhao, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, Jun Sun Jul 2021

Attack As Defense: Characterizing Adversarial Examples Using Robustness, Zhe Zhao, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, Jun Sun

Research Collection School Of Computing and Information Systems

As a new programming paradigm, deep learning has expanded its application to many real-world problems. At the same time, deep learning based software are found to be vulnerable to adversarial attacks. Though various defense mechanisms have been proposed to improve robustness of deep learning software, many of them are ineffective against adaptive attacks. In this work, we propose a novel characterization to distinguish adversarial examples from benign ones based on the observation that adversarial examples are significantly less robust than benign ones. As existing robustness measurement does not scale to large networks, we propose a novel defense framework, named attack …


Robot: Robustness-Oriented Testing For Deep Learning Systems, Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, Peng Cheng May 2021

Robot: Robustness-Oriented Testing For Deep Learning Systems, Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, Peng Cheng

Research Collection School Of Computing and Information Systems

Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a. bugs) of DL systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have revealed that the commonly used neuron coverage metrics by existing DL testing approaches are not correlated to model robustness. It is also not an effective measurement on the confidence of the model robustness after testing. In this work, we address this gap by …


Breaking Neural Reasoning Architectures With Metamorphic Relation-Based Adversarial Examples, Alvin Chan, Lei Ma, Felix Juefei-Xu, Yew-Soon Ong, Xiaofei Xie, Minhui Xue, Yang Liu Apr 2021

Breaking Neural Reasoning Architectures With Metamorphic Relation-Based Adversarial Examples, Alvin Chan, Lei Ma, Felix Juefei-Xu, Yew-Soon Ong, Xiaofei Xie, Minhui Xue, Yang Liu

Research Collection School Of Computing and Information Systems

The ability to read, reason, and infer lies at the heart of neural reasoning architectures. After all, the ability to perform logical reasoning over language remains a coveted goal of Artificial Intelligence. To this end, models such as the Turing-complete differentiable neural computer (DNC) boast of real logical reasoning capabilities, along with the ability to reason beyond simple surface-level matching. In this brief, we propose the first probe into DNC's logical reasoning capabilities with a focus on text-based question answering (QA). More concretely, we propose a conceptually simple but effective adversarial attack based on metamorphic relations. Our proposed adversarial attack …


On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead Mar 2021

On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead

Engineering Faculty Articles and Research

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can …


An Exploratory Study On The Introduction And Removal Of Different Types Of Technical Debt In Deep Learning Frameworks, Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, Shanping Li Feb 2021

An Exploratory Study On The Introduction And Removal Of Different Types Of Technical Debt In Deep Learning Frameworks, Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, Shanping Li

Research Collection School Of Computing and Information Systems

To complete tasks faster, developers often have to sacrifice the quality of the software. Such compromised practice results in the increasing burden to developers in future development. The metaphor, technical debt, describes such practice. Prior research has illustrated the negative impact of technical debt, and many researchers investigated how developers deal with a certain type of technical debt. However, few studies focused on the removal of different types of technical debt in practice. To fill this gap, we use the introduction and removal of different types of self-admitted technical debt (i.e., SATD) in 7 deep learning frameworks as an example. …


Single And Differential Morph Attack Detection, Baaria Chaudhary Jan 2021

Single And Differential Morph Attack Detection, Baaria Chaudhary

Graduate Theses, Dissertations, and Problem Reports

Face recognition systems operate on the assumption that a person's face serves as the unique link to their identity. In this thesis, we explore the problem of morph attacks, which have become a viable threat to face verification scenarios precisely because of their inherent ability to break this unique link. A morph attack occurs when two people who share similar facial features morph their faces together such that the resulting face image is recognized as either of two contributing individuals. Morphs inherit enough visual features from both individuals that both humans and automatic algorithms confuse them. The contributions of this …