Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong Jun 2018

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong

The International Student Science Fair 2018

Lithium ion batteries (LIBs) are commonly found in many portable electronic appliances due to their ability to be rechargeable. Currently, commercial anodes in Li-ion batteries (graphite) have a theoretical capacity of around 372 mAh/g, while FeCo2O4 that will be investigated as the anode material has a theoretical capacity of 901.985mAh/g, more than double of the current commercial anode’s capacity. Earlier work done by Sharma et al also showed that FeCo2O4 has a very promising initial capacity of 827mAh/g. As such, the engineering goal is to produce a battery that will have a higher capacity than the current commercial Li-ion batteries …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


Synthesis Of A Silsesquioxane Based Supramolecular Polymer, Rachel Bianculli Apr 2018

Synthesis Of A Silsesquioxane Based Supramolecular Polymer, Rachel Bianculli

Honors Projects

Research toward smart materials, specifically self-healing polymers, is an expanding topic within the materials science field. These materials rely heavily on dynamic crosslinking that is achieved by inducing different degrees of hydrogen bonding, van der Waals forces, etc. This work, demonstrated by research previously done within the Ostrowski research group, shows how coordination bonds of transition metals have been shown to create light activated, self-healing properties. Work done with these light-activated chromium (III) complexes with a poly(butylyene-co-ethylene) backbone have shown how metal—ligand coordination geometries can tune mechanical properties of the polymeric material. However, these materials suffer from being incredibly soft …


Steric Effects On The Formation Of Manganese Oxide Clusters And 2-Dimensional Ammonium Formate Architectures, Carl Oberle Apr 2018

Steric Effects On The Formation Of Manganese Oxide Clusters And 2-Dimensional Ammonium Formate Architectures, Carl Oberle

Dissertations

It has been demonstrated by the Beatty group that altering the identity of the ortho-substituent of a dianiline counterion affects the assembly and dimensionality of a cadmium-chloride layer from 2-D to 0-D. This work seeks to extend this finding to metal oxide and organic hydrogen-bonded materials. By systematically increasing the ortho­-substituent’s size on the benzoate building block of reported manganese oxide clusters, of formula MnxOy(O2C-R)zLw (where R = Alkyl, L = neutral monodentate ligand), we aim to impact the self-assembly of these materials relative to their parent …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …