Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Luminescence And Structural Properties Of Silicon-Germanium Quantum Structures Fabricated By Ion Implantation, Matheus Coelho Adam Apr 2024

Luminescence And Structural Properties Of Silicon-Germanium Quantum Structures Fabricated By Ion Implantation, Matheus Coelho Adam

Electronic Thesis and Dissertation Repository

The advancement of semiconductor materials has played a crucial role in driving positive technological breakthroughs that impact humanity in numerous ways. The presence of defects significantly alters the physical properties of semiconductors, making their analysis essential in the fabrication of semiconductor devices. I presented a new method to quantify surface and near-surface defects in single crystal semiconductors. Epitaxially-grown silicon was measured by low energy electron diffraction (LEED) to obtain the surface Debye temperature (θD). The results showed the surface θD of bulk Si (001), 1.0 μm, and 0.6 μm Si on sapphire of 333 K, 299 K, …


Tunable Magnetic Coupling In Graphene Nanoribbon Quantum Dots, Peter H. Jacobse, Mamun Sarker, Anshul Saxena, Brookhaven National Laboratory, Ziyi Wang, Emma Berger, Narayana R. Aluru, Alexander Sinitskii, Michael F. Crommie Feb 2024

Tunable Magnetic Coupling In Graphene Nanoribbon Quantum Dots, Peter H. Jacobse, Mamun Sarker, Anshul Saxena, Brookhaven National Laboratory, Ziyi Wang, Emma Berger, Narayana R. Aluru, Alexander Sinitskii, Michael F. Crommie

Chemistry Department: Faculty Publications

Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, …


Charged Excitons And Trions In The Semiconductor Quantum Dot: Electronic Structure And Effect Of External Fields, Jayden Leonard Jan 2024

Charged Excitons And Trions In The Semiconductor Quantum Dot: Electronic Structure And Effect Of External Fields, Jayden Leonard

Theses, Dissertations and Capstones

In this thesis, we are studying the electronic structures and optical properties of charged excitons and trions (i.e., the exciton-associated quasi-particles in semiconductor materials) in quantum dots which have a three-dimensional confinement configuration. We also consider the effects of an external electric and magnetic field on the charged excitons. Initially theorized in 1958, charged excitons are a fairly new phenomenon in physics in which an exciton (i.e., an electron coupled with an electron hole) is coupled with either another electron or another hole (giving either a ‘negative exciton’ or ‘positive exciton’ accordingly). In the completely confined configuration like the quantum …


Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi Jan 2024

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi

Chemistry & Biochemistry Faculty Publications

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier …