Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Multifrequency Scintillation In The Polar Caps, Tate Colby Dec 2022

Multifrequency Scintillation In The Polar Caps, Tate Colby

Doctoral Dissertations and Master's Theses

In the ionosphere, plasma density structures with scales sizes ranging from a few centimeters to hundreds of kilometers are capable of modifying the phase and amplitude of a radio signal in a rapid random manner in a process called scintillation. The Coherent Electromagnetic Radio Tomography (CERTO) and the Canadian High Arctic Ionospheric Network (CHAIN) are two different networks of scintillation receivers, each with a station in Resolute Bay, Canada. CERTO measures amplitude and phase signals in VHF and UHF while CHAIN measures amplitude and phase signals in the L-band. Through these measurements we can calculate the scintillation indexes, S_4 and …


A Statistical Analysis Of Sporadic-E Characteristics Associated With Gnss Radio Occultation Phase And Amplitude Scintillations, Daniel J. Emmons, Dong L. Wu, Nimalan Swarnalingam Dec 2022

A Statistical Analysis Of Sporadic-E Characteristics Associated With Gnss Radio Occultation Phase And Amplitude Scintillations, Daniel J. Emmons, Dong L. Wu, Nimalan Swarnalingam

Faculty Publications

Statistical GNSS-RO measurements of phase and amplitude scintillation are analyzed at the mid-latitudes in the local summer for a 100 km altitude. These conditions are known to contain frequent sporadic-E, and the S4-σϕ trends provide insight into the statistical distributions of the sporadic-E parameters. Joint two-dimensional S4-σϕ histograms are presented, showing roughly linear trends until the S4 saturates near 0.8. To interpret the measurements and understand the sporadic-E contributions, 10,000 simulations of RO signals perturbed by sporadic-E layers are performed using length, intensity, and vertical thickness distributions from previous studies, with the assumption that the sporadic-E layer acts …


Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darrone Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye Jun 2022

Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darrone Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye

Faculty Publications

A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthe-sized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystal-lizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.98430(10)Å,b= 11.7265(2) Å,andc= 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9units connectedby GeO3F3octahedra. In its pure form, Rb4Ge5O9F6shows neither luminescence nor scintillation butwhen doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. Theisostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.9960(3) Å,b= 11.7464(6) Å, andc= 19.3341(9) Å. X-ray absorption nearedge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggestthat the niobium …


Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye Jun 2022

Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye

Faculty Publications

A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped …


Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye Jun 2022

Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye

Faculty Publications

A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped …


Studies Of Time Variations Of The Magnetic Field In The Nedm@Sns Experiment, Mojtaba Behzadipour Jan 2022

Studies Of Time Variations Of The Magnetic Field In The Nedm@Sns Experiment, Mojtaba Behzadipour

Theses and Dissertations--Physics and Astronomy

It is thought that equal quantities of matter and antimatter were generated at the moment of the Big Bang. However, observations of the Universe show that there is a significant excess of matter over antimatter. The matter-antimatter asymmetry in the Universe (baryon to photon ratio) is observed to be of the order of 10-10 [1]. Baryogenesis is a possible explanation for the matter-antimatter asymmetry of the universe. In 1967, Sakharov proposed three criteria necessary for Baryogenesis. The three conditions are: 1) baryon number violation, 2) C and CP violation and 3) departure from thermal equilibrium. However, the Standard Model's …