Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2022

Molecular dynamics

Discipline
Institution
Publication
Publication Type

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Classification Of Nuclear Pastas Through Alpha Shapes Model, Daniela Ramirez Chavez Dec 2022

Classification Of Nuclear Pastas Through Alpha Shapes Model, Daniela Ramirez Chavez

Open Access Theses & Dissertations

The nuclear pasta is important because is an astromaterial with incredible strength that may be a source for gravitational waves, which observe from the rotation of neutron stars. The characterization of the pasta is vital because the nuclear phases have transport properties - compressibility, neutrino opacity, thermal conductivity, and electrical conductivity - associated with their shape for which neutron stars may be sensitive. These properties could interpret observations of supernova neutrinos, magnetic field decay, and crust cooling of accreting neutron stars. Here, we study the nuclear pasta using alpha shapes to achieve a phase characterization with the Minkowski functionals (area, …


Turning Density Functional Theory Calculations Into Molecular Mechanics Simulations : Establishing The Fluctuating Density Model For Rna Nucleobases, Christopher A. Myers Dec 2022

Turning Density Functional Theory Calculations Into Molecular Mechanics Simulations : Establishing The Fluctuating Density Model For Rna Nucleobases, Christopher A. Myers

Legacy Theses & Dissertations (2009 - 2024)

Molecular mechanics (MD) simulations and density functional theory (DFT) have been the backbone of computational chemistry for decades. Due to its accuracy and computational feasibility, DFT has become the go-to method for theoretically predicting interaction energies, polarizability, and other electronic properties of small molecules at the quantum mechanical level. Although less fundamental than DFT, molecular mechanics (MM) algorithms have been just as influential in the fields of biology and chemistry, owing their success to the ability to compute measurable, macroscopic quantities for systems with tens of thousands to hundreds of thousands of atoms at a time. Nevertheless, MD simulations would …


Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Sep 2022

Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we performed all-atom MD simulations of RBD–ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD–ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD–ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD–ACE2 complexes. By employing the ensemble-based global network analysis, we …


Ligand-Based Virtual Screening And Molecular Docking Of Benzimidazoles As Potential Inhibitors Of Triosephosphate Isomerase Identified New Trypanocidal Agents, Lenci K. Vazquez-Jimenez, Alfredo Juarez-Saldivar, Rogelio Gomez-Escobedo, Timoteo Delgado-Maldonado, Domingo Mendez-Alvarez, Isidro Palos, Debasish Bandyopadhyay, Carlos Gaona-Lopez, Eyra Ortiz-Perez, Benjamin Nogueda-Torres, Esther Ramirez-Moreno, Gildardo Rivera Sep 2022

Ligand-Based Virtual Screening And Molecular Docking Of Benzimidazoles As Potential Inhibitors Of Triosephosphate Isomerase Identified New Trypanocidal Agents, Lenci K. Vazquez-Jimenez, Alfredo Juarez-Saldivar, Rogelio Gomez-Escobedo, Timoteo Delgado-Maldonado, Domingo Mendez-Alvarez, Isidro Palos, Debasish Bandyopadhyay, Carlos Gaona-Lopez, Eyra Ortiz-Perez, Benjamin Nogueda-Torres, Esther Ramirez-Moreno, Gildardo Rivera

Chemistry Faculty Publications and Presentations

Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based …


Probing The Link Between Pancratistatin And Mitochondrial Apoptosis Through Changes In The Membrane Dynamics On The Nanoscale, Stuart R. Castillo, Brett W. Rickeard, Mitchell Dipasquale, Michael H.L. Nguyen, Aislyn Lewis-Laurent, Milka Doktorova, Batuhan Kav, Markus S. Miettinen, Michihiro Nagao, Elizabeth G. Kelley, Drew Marquardt Jun 2022

Probing The Link Between Pancratistatin And Mitochondrial Apoptosis Through Changes In The Membrane Dynamics On The Nanoscale, Stuart R. Castillo, Brett W. Rickeard, Mitchell Dipasquale, Michael H.L. Nguyen, Aislyn Lewis-Laurent, Milka Doktorova, Batuhan Kav, Markus S. Miettinen, Michihiro Nagao, Elizabeth G. Kelley, Drew Marquardt

Chemistry and Biochemistry Publications

Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin-echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST's effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to …


Developing And Applying Computational Algorithms To Reveal Health-Related Biomolecular Interactions, Yixin Xie May 2022

Developing And Applying Computational Algorithms To Reveal Health-Related Biomolecular Interactions, Yixin Xie

Open Access Theses & Dissertations

Computational biology is an interdisciplinary area that applies computational approaches in biological big data, including protein amino acid sequences, genetic sequences, etc., which is widely used to analyze protein-protein interactions, make predictions in drug discovery, develop vaccines, etc. Popular methods include mathematical modeling, molecular dynamics simulations, data science mythology, etc. With the help of computational algorithms and applications, drug development is much faster than traditional processes, as it reduces risks early on in a drug discovery process and helps researchers select target candidates that have the highest potential for success. In my doctoral research, I applied multi-scale computational approaches to …


Implications Of Metal Coordination In Damage And Recognition Of Nucleic Acids And Lipid Bilayers, Ana Dreab May 2022

Implications Of Metal Coordination In Damage And Recognition Of Nucleic Acids And Lipid Bilayers, Ana Dreab

Chemistry & Biochemistry Theses & Dissertations

Metal ions have a myriad of biological functions from structural stability to enzymatic (de)activation and metabolic electron transfer. Redox-active metals also mediate the formation of reactive oxygen species which may either cause oxidative damage or protect cellular components. Computational modeling is used here to investigate the role of (1) metal-ion binding to antimicrobial peptides, (2) metal-ion removal and disulfide formation on zinc finger (ZF) proteins, and (3) coordination of thiones/selones for the prevention of metal-mediated redox damage.

Piscidins, natural-occurring antimicrobial peptides, efficiently kill bacteria by targeting their membranes. Their efficacy is enhanced in vitro by metal-binding and the presence of …


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Repurposing Lansoprazole And Posaconazole To Treat Leishmaniasis: Integration Of In Vitro Testing, Pharmacological Corroboration, And Mechanisms Of Action, Yash Gupta, Steven Goicoechea, Jesus G. Romero, Raman Mathur, Thomas R. Caulfield, Daniel P. Becker, Ravi Durvasula, Prakasha Kempaiah Mar 2022

Repurposing Lansoprazole And Posaconazole To Treat Leishmaniasis: Integration Of In Vitro Testing, Pharmacological Corroboration, And Mechanisms Of Action, Yash Gupta, Steven Goicoechea, Jesus G. Romero, Raman Mathur, Thomas R. Caulfield, Daniel P. Becker, Ravi Durvasula, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

Leishmaniasis remains a serious public health problem in many tropical regions of the world. Among neglected tropical diseases, the mortality rate of leishmaniasis is second only to malaria. All currently approved therapeutics have toxic side effects and face rapidly increasing resistance. To identify existing drugs with antileishmanial activity and predict the mechanism of action, we designed a drug-discovery pipeline utilizing both in-silico and in-vitro methods. First, we screened compounds from the Selleckchem Bio-Active Compound Library containing ~1622 FDA-approved drugs and narrowed these down to 96 candidates based on data mining for possible anti-parasitic properties. Next, we completed preliminary in-vitro testing …


Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker Mar 2022

Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural …


Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …


Ultrafast Dynamics Of Nitro−Nitrite Rearrangement And Dissociation In Nitromethane Cation, Mi'kayla D. Word, Hugo Andres Lopez Pena, Derrick Ampadu Boateng, Shane L. Mcpherson, Gennady L. Gutsev, Lavrenty Gutsev, Ka Un Lao, Katharine M. Tibbetts Jan 2022

Ultrafast Dynamics Of Nitro−Nitrite Rearrangement And Dissociation In Nitromethane Cation, Mi'kayla D. Word, Hugo Andres Lopez Pena, Derrick Ampadu Boateng, Shane L. Mcpherson, Gennady L. Gutsev, Lavrenty Gutsev, Ka Un Lao, Katharine M. Tibbetts

Chemistry Publications

We report new insights into the ultrafast rearrange- ment and dissociation dynamics of nitromethane cation (NM+) using pump−probe measurements, electronic structure calculations, and ab initio molecular dynamics simulations. The “roaming” nitro−nitrite rearrangement (NNR) pathway involving large- amplitude atomic motion, which has been previously described for neutral nitromethane, is demonstrated for NM+. Excess energy resulting from initial population of the electronically excited D2 state of NM+ upon strong-field ionization provides the necessary energy to initiate NNR and subsequent dissociation into NO+. Both pump−probe measurements and molecular dynamics simulations are consistent with the completion of NNR within 500 fs of ionization with …


Nonhematopoietic Erythropoietin: A Study Of Signaling, Structure, And Behavior, Nicholas John Pekas Jan 2022

Nonhematopoietic Erythropoietin: A Study Of Signaling, Structure, And Behavior, Nicholas John Pekas

Dissertations and Theses

Erythropoietin (EPO) is a cytokine hormone known for initiating red blood cell proliferation by binding to its homodimer receptor (EPOR)2 in the bone marrow. Recent progress in neurobiology has shown that EPO also exerts robust neurotrophic and neuroprotective activity in the CNS. It is widely thought that EPO’s neurotrophic activity is centrally involved in its antidepressant and cognitive enhancing effects. However, EPO’s potent erythropoietic effects prevent it from being used in the clinic to treat psychiatric disorders. A chemically engineered non-erythropoietic derivative of EPO, carbamoylated EPO (CEPO), produces psychoactive effects without activating hematopoiesis. However, CEPO is expensive to produce and …


Characterizing The Effects Of Solvent And Analyte Properties On Ionization Efficiency By Novel Field-Free And Field-Enabled Ionization Techniques, Kinkini Udara Jayasundara Jan 2022

Characterizing The Effects Of Solvent And Analyte Properties On Ionization Efficiency By Novel Field-Free And Field-Enabled Ionization Techniques, Kinkini Udara Jayasundara

Graduate Theses, Dissertations, and Problem Reports

In recent years the mass spectrometry (MS) area of field and/or direct analysis has grown dramatically. As a result, field-portable and miniaturized mass spectrometers, introduced only a few years ago, are proliferating. A highly desired feature for field-portable MS, or in-field analysis, is the ability to use ionization techniques requiring very little sample preparation as well as an ability to generate the ions under ambient conditions. Recently, a new ambient ionization technique termed vibrating sharp-edge spray ionization (VSSI) has been introduced which overcomes the field-portable limitations of other spray-based methods including the requirements for auxiliary components (e.g., nebulizing gas and …


Multilevel Computational Investigation Into The Dynamics And Reaction Mechanisms Of Non-Heme Iron And 2-Oxoglutarate Dependent Enzymes, Shobhit Sanjeev Chaturvedi Jan 2022

Multilevel Computational Investigation Into The Dynamics And Reaction Mechanisms Of Non-Heme Iron And 2-Oxoglutarate Dependent Enzymes, Shobhit Sanjeev Chaturvedi

Dissertations, Master's Theses and Master's Reports

Computational chemistry methods have been extensively applied to investigate biological systems. This dissertation utilizes a multilevel computational approach to explore the dynamics and reaction mechanisms of two groups of enzymes belonging to non-heme Fe(II) and 2-oxoglutarate (2OG) dependent superfamily – histone lysine demethylases from class 7 and ethylene forming enzyme (EFE). Chapter 2 uncovers the role of conformational dynamics in the substrate selectivity of histone lysine demethylases 7A and 7B. The molecular dynamics (MD) simulations of the two enzymes revealed the importance of linker flexibility and dynamics in relative orientations of the reader (PHD) and the catalytic (JmjC) domains. Chapter …


Mdz: An Efficient Error-Bounded Lossy Compressor For Molecular Dynamics, Kai Zhao, Sheng Di, Danny Perez, Xin Liang, Zizhong Chen, Franck Cappello Jan 2022

Mdz: An Efficient Error-Bounded Lossy Compressor For Molecular Dynamics, Kai Zhao, Sheng Di, Danny Perez, Xin Liang, Zizhong Chen, Franck Cappello

Computer Science Faculty Research & Creative Works

Molecular dynamics (MD) has been widely used in today's scientific research across multiple domains including materials science, biochemistry, biophysics, and structural biology. MD simulations can produce extremely large amounts of data in that each simulation could involve a large number of atoms (up to trillions) for a large number of timesteps (up to hundreds of millions). In this paper, we perform an in-depth analysis of a number of MD simulation datasets and then develop an efficient error-bounded lossy compressor that can significantly improve the compression ratios. The contributions are fourfold. (1) We characterize a number of MD datasets and summarize …


Review Of Current Reactive Force Field Potentials For Use In Simulating The Atomic Layer Deposition Of Alumina On Aluminum, Devon T. Romine Jan 2022

Review Of Current Reactive Force Field Potentials For Use In Simulating The Atomic Layer Deposition Of Alumina On Aluminum, Devon T. Romine

MSU Graduate Theses

Alumina has recently garnered quite a bit of attention for use as a tunnel barrier in Josephson tunnel junctions. The quality of the metal oxide layer in the Josephson tunnel junction is a key factor in its effectiveness. To optimize the deposition method of alumina, we need a deep understanding of the large-scale surface interactions that cannot be reached using ab initio molecular dynamics. In this study, I have compared two existing reactive force field (ReaxFF) parameters to determine their abilities to model the atomic layer deposition (ALD) of alumina on an aluminum surface. ReaxFF molecular dynamics was chosen because …


Virtual Screening, Drug-Likeness Analysis, And Molecular Docking Study Of Potentialsevere Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors, Nikola Nedeljkovic, Milos Nikolic, Ana Stankovic, Nevena Jeremic, Dusan Tomovic, Andriana Bukonjic, Gordana Radic, Marina Mijajlovic Jan 2022

Virtual Screening, Drug-Likeness Analysis, And Molecular Docking Study Of Potentialsevere Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors, Nikola Nedeljkovic, Milos Nikolic, Ana Stankovic, Nevena Jeremic, Dusan Tomovic, Andriana Bukonjic, Gordana Radic, Marina Mijajlovic

Turkish Journal of Chemistry

Due to the length of time required to develop specific antiviral agents, the World Health Organization adopted the strategy of repurposing existing medications to treat Coronavirus disease 2019 infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease is possible biological target for potential antiviral drugs. We selected various compounds from PubChem database based on the structure of main protease inhibitors in Protein Data Bank database. Ten compounds showed nontumorigenic and nonmutagenic potential and met Egan's and Lipinski's rules. Molecular docking analysis was performed using AutoDock Vina software. Based on number and type of key binding interactions, as well as …