Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo Dec 2021

Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo

Boise State University Theses and Dissertations

Through the operation of a molecular beam epitaxy (MBE) machine, I worked on developing the homoepitaxy of high quality InAs with a (111)A crystallographic orientation. By tuning substrate temperature, we obtained a transition from a 2D island growth mode to step- ow growth. Optimized MBE parameters (substrate temperature = 500 °C, growth rate = 0.12 ML/s and V/III ratio ⩾ 40) lead to growth of extremely smooth InAs(111)A films, free from hillocks and other 3D surface imperfections. We see a correlation between InAs surface smoothness and optical quality, as measured by photoluminescence spectroscopy. This work establishes InAs(111)A as a platform …


Functional Nanoparticles: Tin Monoxide And Molybdenum Disulfide Quantum Dots On Graphene Nanosheets, Denys Vidish Sep 2021

Functional Nanoparticles: Tin Monoxide And Molybdenum Disulfide Quantum Dots On Graphene Nanosheets, Denys Vidish

Electronic Thesis and Dissertation Repository

Light harvesting can be referred to the use of an ensemble of different nanoparticles, or quantum dots, or other absorbers to optimize the ability to capture a given spectrum of electromagnetic radiation (for example the solar spectrum under specific atmospheric conditions) in a light-absorbing system. To this end, different nanoparticles play complementary functions within the system and absorb or scatter light at different wavelength intervals. Light harvesting finds applications in fields as diverse as solar cells, photosynthesis and photocatalysis. Graphene supporting a set of different semiconducting nanoparticles has often been proposed as light harvesters. To further this concept, my thesis …


Single-Photon Generation From Self-Assembled Gaas/Inalas(111)A Quantum Dots With Ultrasmall Fine-Structure Splitting, Christopher F. Schuck, Robert Boutelle, Kevin Silverman, Galan Moody, Paul J. Simmonds Apr 2021

Single-Photon Generation From Self-Assembled Gaas/Inalas(111)A Quantum Dots With Ultrasmall Fine-Structure Splitting, Christopher F. Schuck, Robert Boutelle, Kevin Silverman, Galan Moody, Paul J. Simmonds

Physics Faculty Publications and Presentations

We present a novel semiconductor single-photon source based on tensile-strained (111)-oriented GaAs/InAlAs quantum dots (QDs) exhibiting ultrasmall exciton fine-structure splitting (FSS) of ≤ 8 µeV. Using low-temperature micro-photoluminescence spectroscopy, we identify the biexciton-exciton radiative cascade from individual QDs, which, combined with small FSS, indicates these self-assembled GaAs(111) QDs are excellent candidates for polarization-entangled photon-pair generation.


Fundamental Transport Properties In Silicon Quantum Structures, Nazban M. Darukhanawalla Jan 2021

Fundamental Transport Properties In Silicon Quantum Structures, Nazban M. Darukhanawalla

Electronic Thesis and Dissertation Repository

In the field of silicon photonics, there is an effort to bridge the gap between electrical and optical signals on a single platform, creating a need for Si-based light sources. In this project, Si quantum structures – Si quantum wells and quantum dots in SiO2 were fabricated via solid state precipitation methods. Their properties were studied using X-ray photoelectron spectroscopy, photoluminescence and I-V measurements. Rutherford backscattering spectroscopy was used for depth analysis in monitoring the Si distribution. Different electrical transport mechanisms were explored to understand how an ensemble of silicon QD’s or a silicon quantum well behaves in an SiO2 …


Spectroscopic Investigation Of Defect-State Emission In Cdse Quantum Dots, Gülhan Güleroğlu, Caner Ünlü Jan 2021

Spectroscopic Investigation Of Defect-State Emission In Cdse Quantum Dots, Gülhan Güleroğlu, Caner Ünlü

Turkish Journal of Chemistry

CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photo¬physical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked …


Plasmon Enhanced Single Molecule Fluorescence In Zero Mode Waveguides (Zmws), Abdullah Masud Jan 2021

Plasmon Enhanced Single Molecule Fluorescence In Zero Mode Waveguides (Zmws), Abdullah Masud

Theses and Dissertations--Chemistry

Plasmonic nanostructures are an extensive research focus due to their ability to modify the photophysical properties of nearby fluorophores. Surface plasmons (SP), defined as the collective oscillation of delocalized electrons, are the fundamental characteristic primarily responsible for altering those photophysical properties. Studying fluorophores at the single-molecule level has received significant attention since more specific information can be extracted from single molecule-based studies, which otherwise could be obscured in ensemble studies. However, single-molecule studies are inherently challenging because the signal from a single molecule is usually dim, making it difficult to detect. The situation is even worse in a crowded environment …