Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Identification Of Chemical Structures And Substructures Via Deep Q-Learning And Supervised Learning Of Ftir Spectra, Joshua D. Ellis Aug 2021

Identification Of Chemical Structures And Substructures Via Deep Q-Learning And Supervised Learning Of Ftir Spectra, Joshua D. Ellis

MSU Graduate Theses

Fourier-transform infrared (FTIR) spectra of organic compounds can be used to compare and identify compounds. A mid-FTIR spectrum gives absorbance values of a compound over the 400-4000 cm-1 range. Spectral matching is the process of comparing the spectral signature of two or more compounds and returning a value for the similarity of the compounds based on how closely their spectra match. This process is commonly used to identify an unknown compound by searching for its spectrum’s closes match in a database of known spectra. A major limitation of this process is that it can only be used to identify …


Predicting Severity Of Traumatic Brain Injury: A Residual Learning Model From Magnetic Resonance Images, Dacosta Yeboah Aug 2021

Predicting Severity Of Traumatic Brain Injury: A Residual Learning Model From Magnetic Resonance Images, Dacosta Yeboah

MSU Graduate Theses

One of the most significant frontiers for computational scientists is the engineering of human healthcare delivery based on intelligent analysis of health data. In a variety of neurological disorders such as Traumatic Brain Injury (TBI), neuro-imaging information plays a crucial role in the decision-making regarding patient care and as a potential prognostic marker for outcome. TBI is a heterogeneous neurological disorder. Due to the economic burdens of the disorder, sorting out this heterogeneity could provide more insights and better understanding of TBI recovery trajectories, thus improving overall diagnosis and treatment options. Magnetic Resonance Imaging (MRI) is a non-invasive technique that …


Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen Aug 2021

Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen

MSU Graduate Theses

In this study, an important aspect of the synthesis process for a-BxC:Hy was systematically modeled by utilizing the Reactive Molecular Dynamics (MD) in modeling the argon bombardment from the orthocarborane molecules as the precursor. The MD simulations are used to assess the dynamics associated with the free radicals that result from the ion bombardment. By applying the Data Mining/Machine Learning analysis into the datasets generated from the large reactive MD simulations, I was able to identify and quality the kinetics of these radicals. Overall, this approach allows for a better understanding of the overall mechanism at the atomistic level of …


Maidrl: Semi-Centralized Multi-Agent Reinforcement Learning Using Agent Influence, Anthony Lee Harris Jan 2021

Maidrl: Semi-Centralized Multi-Agent Reinforcement Learning Using Agent Influence, Anthony Lee Harris

MSU Graduate Theses

In recent years, reinforcement learning algorithms, a subset of machine learning that focuses on solving problems through trial-and-error learning, have been used in the field of multi-agent systems to help the agents with interactions and cooperation on a variety of tasks. Given the enormous success of reinforcement learning in single-agent systems like Chess, Shogi, and Go, it is natural for the next step to be the expansion into multi-agent systems. However, controlling multiple agents simultaneously is extremely challenging, as the complexity increases tremendously with the number of agents in the system. Existing approaches in this regard use a wide range …