Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery Jun 2020

Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery

Theses and Dissertations

This thesis takes the Scotland Yard board game and modifies its rules to mimic important aspects of space in order to facilitate the creation of artificial intelligence for space asset pursuit/evasion scenarios. Space has become a physical warfighting domain. To combat threats, an understanding of the tactics, techniques, and procedures must be captured and studied. Games and simulations are effective tools to capture data lacking historical context. Artificial intelligence and machine learning models can use simulations to develop proper defensive and offensive tactics, techniques, and procedures capable of protecting systems against potential threats. Monte Carlo Tree Search is a bandit-based …


Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu May 2020

Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu

Dissertations

The human brain, with its massive computational capability and power efficiency in small form factor, continues to inspire the ultimate goal of building machines that can perform tasks without being explicitly programmed. In an effort to mimic the natural information processing paradigms observed in the brain, several neural network generations have been proposed over the years. Among the neural networks inspired by biology, second-generation Artificial or Deep Neural Networks (ANNs/DNNs) use memoryless neuron models and have shown unprecedented success surpassing humans in a wide variety of tasks. Unlike ANNs, third-generation Spiking Neural Networks (SNNs) closely mimic biological neurons by operating …


Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning At Jefferson Laboratory, Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin Jan 2020

Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning At Jefferson Laboratory, Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

We report on the development of machine learning models for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a continuous-wave recirculating linac utilizing 418 SRF cavities to accelerate electrons up to 12 GeV through five passes. Of these, 96 cavities (12 cryomodules) are designed with a digital low-level rf system configured such that a cavity fault triggers waveform recordings of 17 rf signals for each of the eight cavities in the cryomodule. Subject matter experts are able to analyze the collected time-series data and identify which of the …