Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning Approaches For Improving Prediction Performance Of Structure-Activity Relationship Models, Gabriel Idakwo Aug 2020

Machine Learning Approaches For Improving Prediction Performance Of Structure-Activity Relationship Models, Gabriel Idakwo

Dissertations

In silico bioactivity prediction studies are designed to complement in vivo and in vitro efforts to assess the activity and properties of small molecules. In silico methods such as Quantitative Structure-Activity/Property Relationship (QSAR) are used to correlate the structure of a molecule to its biological property in drug design and toxicological studies. In this body of work, I started with two in-depth reviews into the application of machine learning based approaches and feature reduction methods to QSAR, and then investigated solutions to three common challenges faced in machine learning based QSAR studies.

First, to improve the prediction accuracy of learning …


Brain Disease Detection From Eegs: Comparing Spiking And Recurrent Neural Networks For Non-Stationary Time Series Classification, Hristo Stoev Jan 2020

Brain Disease Detection From Eegs: Comparing Spiking And Recurrent Neural Networks For Non-Stationary Time Series Classification, Hristo Stoev

Dissertations

Modeling non-stationary time series data is a difficult problem area in AI, due to the fact that the statistical properties of the data change as the time series progresses. This complicates the classification of non-stationary time series, which is a method used in the detection of brain diseases from EEGs. Various techniques have been developed in the field of deep learning for tackling this problem, with recurrent neural networks (RNN) approaches utilising Long short-term memory (LSTM) architectures achieving a high degree of success. This study implements a new, spiking neural network-based approach to time series classification for the purpose of …


Classification Of Animal Sound Using Convolutional Neural Network, Neha Singh Jan 2020

Classification Of Animal Sound Using Convolutional Neural Network, Neha Singh

Dissertations

Recently, labeling of acoustic events has emerged as an active topic covering a wide range of applications. High-level semantic inference can be conducted based on main audioeffects to facilitate various content-based applications for analysis, efficient recovery and content management. This paper proposes a flexible Convolutional neural network-based framework for animal audio classification. The work takes inspiration from various deep neural network developed for multimedia classification recently. The model is driven by the ideology of identifying the animal sound in the audio file by forcing the network to pay attention to core audio effect present in the audio to generate Mel-spectrogram. …


Customer Churn Prediction, Deepshikha Wadikar Jan 2020

Customer Churn Prediction, Deepshikha Wadikar

Dissertations

Churned customers identification plays an essential role for the functioning and growth of any business. Identification of churned customers can help the business to know the reasons for the churn and they can plan their market strategies accordingly to enhance the growth of a business. This research is aimed at developing a machine learning model that can precisely predict the churned customers from the total customers of a Credit Union financial institution. A quantitative and deductive research strategies are employed to build a supervised machine learning model that addresses the class imbalance problem handled feature selection and efficiently predict the …


An Examination Of The Smote And Other Smote-Based Techniques That Use Synthetic Data To Oversample The Minority Class In The Context Of Credit-Card Fraud Classification, Eduardo Parkinson De Castro Jan 2020

An Examination Of The Smote And Other Smote-Based Techniques That Use Synthetic Data To Oversample The Minority Class In The Context Of Credit-Card Fraud Classification, Eduardo Parkinson De Castro

Dissertations

This research project seeks to investigate some of the different sampling techniques that generate and use synthetic data to oversample the minority class as a means of handling the imbalanced distribution between non-fraudulent (majority class) and fraudulent (minority class) classes in a credit-card fraud dataset. The purpose of the research project is to assess the effectiveness of these techniques in the context of fraud detection which is a highly imbalanced and cost-sensitive dataset. Machine learning tasks that require learning from datasets that are highly unbalanced have difficulty learning since many of the traditional learning algorithms are not designed to cope …