Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

University of Wollongong

Storage

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen Jan 2020

S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen

Australian Institute for Innovative Materials - Papers

2020 Iron sulfides draw much attention as electrode candidates for sodium-ion batteries (SIBs) due to the rich chemical stoichiometries and high capacity. However, they usually exhibit poor cycling performance due to the large volume change during sodiation/desodiation process. In this work, we embed Fe7S8 nanoparticles into sulfur, nitrogen-doped carbon (S/N-C) nanofibers through electrospinning/sulfurization processes. The heteroatom doped carbon matrixes could effectively protect the Fe7S8 from structural collapse, obtaining a stable cycling performance. Moreover, the conductive matrixes with 1D structure can facilitate the diffusion of electrons, leading to good rate capability. As results, the as-designed Fe7S8@S/N-C nanofibers present a discharge capacity …


Ultrahigh Energy Storage Properties In (Sr0.7bi0.2)Tio3-Bi(Mg0.5zr0.5)O3 Lead-Free Ceramics And Potential For High-Temperature Capacitors, Xi Kong, Letao Yang, Zhenxiang Cheng, Shujun Zhang Jan 2020

Ultrahigh Energy Storage Properties In (Sr0.7bi0.2)Tio3-Bi(Mg0.5zr0.5)O3 Lead-Free Ceramics And Potential For High-Temperature Capacitors, Xi Kong, Letao Yang, Zhenxiang Cheng, Shujun Zhang

Australian Institute for Innovative Materials - Papers

2020 by the authors. Due to the enhanced demand for numerous electrical energy storage applications, including applications at elevated temperatures, dielectric capacitors with optimized energy storage properties have attracted extensive attention. In this study, a series of lead-free strontium bismuth titanate based relaxor ferroelectric ceramics have been successfully synthesized by high temperature solid-state reaction. The ultrahigh recoverable energy storage density of 4.2 J/cm3 under 380 kV/cm, with the high efficiency of 88%, was obtained in the sample with x = 0.06. Of particular importance is that this ceramic composition exhibits excellent energy storage performance over a wide work temperature up …