Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

University of Wollongong

Reduction

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Self‐Assembled Co2 Reduction Electrocatalyst: Posy‐Bouquet‐Shaped Gold‐Polyaniline Core‐Shell Nanocomposite, Amruthalakshmi Vijayakumar, Yong Zhao, Jinshuo Zou, Kezhong Wang, Chong Yong Lee, Douglas Macfarlane, Caiyun Wang, Gordon G. Wallace Jan 2020

A Self‐Assembled Co2 Reduction Electrocatalyst: Posy‐Bouquet‐Shaped Gold‐Polyaniline Core‐Shell Nanocomposite, Amruthalakshmi Vijayakumar, Yong Zhao, Jinshuo Zou, Kezhong Wang, Chong Yong Lee, Douglas Macfarlane, Caiyun Wang, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

© 2020 Wiley-VCH GmbH Here it was demonstrated that the decoration of gold (Au) with polyaniline is an effective approach in increasing its electrocatalytic reduction of CO2 to CO. The core-shell-structured gold-polyaniline (Au−PANI) nanocomposite delivered a CO2-to-CO conversion efficiency of 85 % with a high current density of 11.6 mA cm−2. The polyaniline shell facilitated CO2 adsorption, and the subsequent formation of reaction intermediates on the gold core contributed to the high efficiency observed.


Fabrication Of Heterostructured Uio-66-Nh2 /Cnts With Enhanced Activity And Selectivity Over Photocatalytic Co2 Reduction, Xiaojun Wang, Guorui Yang, Guodong Chai, Muhammad Nasir, Silan Wang, Xing Zheng, Caiyun Wang, Wei Yan Jan 2020

Fabrication Of Heterostructured Uio-66-Nh2 /Cnts With Enhanced Activity And Selectivity Over Photocatalytic Co2 Reduction, Xiaojun Wang, Guorui Yang, Guodong Chai, Muhammad Nasir, Silan Wang, Xing Zheng, Caiyun Wang, Wei Yan

Australian Institute for Innovative Materials - Papers

© 2020 Hydrogen Energy Publications LLC Developing photocatalysts with superior efficiency and selectivity is an important issue for photocatalytic converting CO2. Hierarchically heterostructured one-dimensional nanomaterials represent a kind of promising catalysts for photocatalytic CO2 reduction on account of the high surface area and synthetic effect between different components. Herein, we synthesized UIO-66-NH2/carbon nanotubes (CNTs) heterostructures via a hydrothermal method, and investigated their photocatalytic performance. The element mapping, X-ray diffraction, and X-ray photoelectron spectroscopy collectively confirmed that the UIO-66-NH2 was successfully loaded on the surface of the CNTs. The specific surface area of the UIO-66-NH2/CNTs is 1.5 times higher than that …