Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

University of Wollongong

Enhanced

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Fabrication Of Heterostructured Uio-66-Nh2 /Cnts With Enhanced Activity And Selectivity Over Photocatalytic Co2 Reduction, Xiaojun Wang, Guorui Yang, Guodong Chai, Muhammad Nasir, Silan Wang, Xing Zheng, Caiyun Wang, Wei Yan Jan 2020

Fabrication Of Heterostructured Uio-66-Nh2 /Cnts With Enhanced Activity And Selectivity Over Photocatalytic Co2 Reduction, Xiaojun Wang, Guorui Yang, Guodong Chai, Muhammad Nasir, Silan Wang, Xing Zheng, Caiyun Wang, Wei Yan

Australian Institute for Innovative Materials - Papers

© 2020 Hydrogen Energy Publications LLC Developing photocatalysts with superior efficiency and selectivity is an important issue for photocatalytic converting CO2. Hierarchically heterostructured one-dimensional nanomaterials represent a kind of promising catalysts for photocatalytic CO2 reduction on account of the high surface area and synthetic effect between different components. Herein, we synthesized UIO-66-NH2/carbon nanotubes (CNTs) heterostructures via a hydrothermal method, and investigated their photocatalytic performance. The element mapping, X-ray diffraction, and X-ray photoelectron spectroscopy collectively confirmed that the UIO-66-NH2 was successfully loaded on the surface of the CNTs. The specific surface area of the UIO-66-NH2/CNTs is 1.5 times higher than that …


Supercritical Co2-Constructed Intralayer [Bi2o2]2+Structural Distortion For Enhanced Co2 Electroreduction, Yannan Zhou, Pengfei Yan, Jun Jia, Suoying Zhang, Xiaoli Zheng, Li Zhang, Bin Zhang, Jun Chen, Weichang Hao, Gongji Chen, Qun Xu, Buxing Han Jan 2020

Supercritical Co2-Constructed Intralayer [Bi2o2]2+Structural Distortion For Enhanced Co2 Electroreduction, Yannan Zhou, Pengfei Yan, Jun Jia, Suoying Zhang, Xiaoli Zheng, Li Zhang, Bin Zhang, Jun Chen, Weichang Hao, Gongji Chen, Qun Xu, Buxing Han

Australian Institute for Innovative Materials - Papers

© 2020 The Royal Society of Chemistry. Inducing crystal distortion in two-dimensional (2D) materials to increase the number of active sites is of great significance in improving the intrinsic activity of electrocatalysts for the CO2 reduction reaction (CO2RR). Developing 2D materials as thin as possible is required for this goal. Herein, taking layered BiOCl as a prototype model, we achieved the intralayer [Bi2O2]2+ structural distortion by using supercritical CO2 as a solvent to reduce the number of interlayer chlorine atoms involved in the reaction. Contrary to expectations, further CO2RR experiments indicate that thick nanoplates exhibit a high faradaic efficiency of …