Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Aerospace Engineering

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 45

Full-Text Articles in Physical Sciences and Mathematics

Dances And Escape Of The Vortex Quartet, Brandon Behring Dec 2020

Dances And Escape Of The Vortex Quartet, Brandon Behring

Dissertations

This dissertation considers the linear stability of a one-parameter family of periodic solutions of the four-vortex problem known as 'leapfrogging' orbits. These solutions, which consist of two pairs of identical yet oppositely-signed vortices, were known to W. Gröbli (1877) and A. E. H. Love (1883) and can be parameterized by a dimensionless parameter related to the geometry of the initial configuration. Simulations by Acheson and numerical Floquet analysis by Tophøj and Aref both indicate, to many digits, that the bifurcation occurs at a value related to the inverse square of the golen ratio. Acheson observed that, after an initial period …


Electro-Optic Satellite Constellation Design Using Multi-Objective Genetic Algorithm, Yasin Tamer Dec 2020

Electro-Optic Satellite Constellation Design Using Multi-Objective Genetic Algorithm, Yasin Tamer

Theses and Dissertations

Satellite constellation design is a complex, highly constrained, and multidisciplinary problem. Unless optimization tools are used, tradeoffs must be conducted at the subsystem level resulting in feasible, but not necessarily optimal, system designs. As satellite technology advances, new methods to optimize the system objectives are developed. This study is based on the development of a representative regional remote sensing constellation design. This thesis analyses the design process of an electrooptic satellite constellation with regional coverage considerations using system-level optimization tools. A multi objective genetic algorithm method is used to optimize the constellation design by utilizing MATLAB and STK integration. Cost, …


Onboard Autonomous Controllability Assessment For Fixed Wing Suavs, Brian Edward Duvall Dec 2020

Onboard Autonomous Controllability Assessment For Fixed Wing Suavs, Brian Edward Duvall

Mechanical & Aerospace Engineering Theses & Dissertations

Traditionally fixed-wing small Unmanned Arial Vehicles (sUAV) are flown while in direct line of sight with commands from a remote operator. However, this is changing with the increased popularity and ready availability of low-cost flight controllers. Flight controllers provide fixed-wing sUAVs with functions that either minimize or eliminate the need for a remote operator. Since the remote operator is no longer controlling the sUAV, it is impossible to determine if the fixed-wing sUAV has proper control authority. In this work, a controllability detection system was designed, built, and flight-tested using COTS hardware. The method features in-situ measurement and analysis of …


Conical Orbital Mechanics: A Rework Of Classic Orbit Transfer Mechanics, Cian Anthony Branco Dec 2020

Conical Orbital Mechanics: A Rework Of Classic Orbit Transfer Mechanics, Cian Anthony Branco

Mechanical & Aerospace Engineering Theses & Dissertations

Simple orbital maneuvers obeying Kepler’s Laws, when taken with respect to Newton’s framework, require considerable time and effort to interpret and understand. Instead of a purely mathematical approach relying on the governing relations, a graphical geometric conceptual representation provides a useful alternative to the physical realities of orbits. Conic sections utilized within the full scope of a modified cone (frustum) were employed to demonstrate and develop a geometric approach to elliptical orbit transformations. The geometric model in-question utilizes the rotation of a plane intersecting the orbital frustum at some angle β (and the change in this angle) in a novel …


Parallelization Of The Advancing Front Local Reconnection Mesh Generation Software Using A Pseudo-Constrained Parallel Data Refinement Method, Kevin Mark Garner Jr. Dec 2020

Parallelization Of The Advancing Front Local Reconnection Mesh Generation Software Using A Pseudo-Constrained Parallel Data Refinement Method, Kevin Mark Garner Jr.

Computer Science Theses & Dissertations

Preliminary results of a long-term project entailing the parallelization of an industrial strength sequential mesh generator, called Advancing Front Local Reconnection (AFLR), are presented. AFLR has been under development for the last 25 years at the NSF/ERC center at Mississippi State University. The parallel procedure that is presented is called Pseudo-constrained (PsC) Parallel Data Refinement (PDR) and consists of the following steps: (i) use an octree data-decomposition scheme to divide the original geometry into subdomains (octree leaves), (ii) refine each subdomain with the proper adjustments of its neighbors using the given refinement code, and (iii) combine all subdomain data into …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Chronos Spacecraft With Chiron Probe: Exploration Of The Hydrosphere, Principle Satellites, Atmosphere, And Rings Of Uranus, Payton E. Pearson Sep 2020

Chronos Spacecraft With Chiron Probe: Exploration Of The Hydrosphere, Principle Satellites, Atmosphere, And Rings Of Uranus, Payton E. Pearson

Theses and Dissertations

A design reference mission using more modern technological innovations has been developed for exploration of the outer reaches of our Solar System, specifically Uranus and its system of satellites. This mission will utilize theoretical technologies mostly without regard to their current technological readiness level (TRL), though most systems have a TRL of at least 5. The primary innovations explored in this thesis are the new launch systems that provide far greater payload capacity potentially sent to anywhere in the Solar System, new Stirling-engine radioisotope thermoelectric generators (SRTGs), vastly improved data storage technologies, optimized satellite antenna relay of data using much …


Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane Aug 2020

Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane

Dissertations

This dissertation is a study of the weakly nonlinear resonant interactions of a triad of gravity-capillary waves in systems of one and two fluid layers of arbitrary depth, in one and two-dimentions. For one-layer systems, resonant triad interactions of gravity-capillary waves are considered and a region where resonant triads can be always found is identified, in the two-dimensional wavevector angles-space. Then a description of the variations of resonant wavenumbers and wave frequencies over the resonance region is given. The amplitude equations correct to second order in wave slope are used to investigate special resonant triads that, providing their initial amplitude …


Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …


Accumulation Of Polar Vorticity On Giant Planets: Towards A Three-Dimensional Theory, Shawn R. Brueshaber Aug 2020

Accumulation Of Polar Vorticity On Giant Planets: Towards A Three-Dimensional Theory, Shawn R. Brueshaber

Dissertations

My research investigates the polar atmospheric dynamics of the giant planets: Jupiter and Saturn (gas giants), and Uranus and Neptune (ice giants). I conduct my research modifying and applying the Explicit Planetary Isentropic Coordinate global circulation code to model the polar regions of the four giant planets.

The motivation behind my research is to uncover the reason why giant planet polar atmospheric dynamics differ. Jupiter features multiple circumpolar cyclones arranged in geometrical configurations, whereas Saturn features a single pole-centered cyclone. Uranus and Neptune also appear to have single pole-centered cyclones, albeit, larger than those on Saturn. …


Deep Learning For Remote Sensing Image Processing, Yan Lu Aug 2020

Deep Learning For Remote Sensing Image Processing, Yan Lu

Computational Modeling & Simulation Engineering Theses & Dissertations

Remote sensing images have many applications such as ground object detection, environmental change monitoring, urban growth monitoring and natural disaster damage assessment. As of 2019, there were roughly 700 satellites listing “earth observation” as their primary application. Both spatial and temporal resolutions of satellite images have improved consistently in recent years and provided opportunities in resolving fine details on the Earth's surface. In the past decade, deep learning techniques have revolutionized many applications in the field of computer vision but have not fully been explored in remote sensing image processing. In this dissertation, several state-of-the-art deep learning models have been …


Optimization Of Spacecraft Formations About Lagrange Points For The Next Generation Space Weather Prediction Mission, Roberto Cuéllar Rangel Jul 2020

Optimization Of Spacecraft Formations About Lagrange Points For The Next Generation Space Weather Prediction Mission, Roberto Cuéllar Rangel

Doctoral Dissertations and Master's Theses

This thesis’s work serves as proof of concept for the Next Generation Space Weather Prediction Mission, a multi-spacecraft mission at various libration points whose objective is to forecast Space Weather hazards with a 12day warning time. This thesis deals with the design and control of orbits of spacecraft formations at different libration points. The systems studied are SunEarth, SunVenus, SunMercury, and SunMars. The orbit design and formation keeping control of the spacecraft are solved simultaneously using an optimization software called DIDO. Initial conditions are obtained through two different strategies. The first one, by placing the spacecraft in a tetrahedral formation …


Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola Jul 2020

Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Use of unmanned aerial systems (UASs) in agriculture has risen in the past decade. These systems are key to modernizing agriculture. UASs collect and elucidate data previously difficult to obtain and used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this paper, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS leveraging the physical presence of the tether to launch multiple sensors along …


Design And Test Of An Autonomy Monitoring Service To Detect Divergent Behaviors On Unmanned Aerial Systems, Loay Y. Almannaei Jun 2020

Design And Test Of An Autonomy Monitoring Service To Detect Divergent Behaviors On Unmanned Aerial Systems, Loay Y. Almannaei

Theses and Dissertations

Operation of Unmanned Aerial Vehicles (UAV) support many critical missions in the United State Air Force (USAF). Monitoring abnormal behavior is one of many responsibilities of the operator during a mission. Some behaviors are hard to be detect by an operator, especially when flying one or more autonomous vehicles; as such, detections require a high level of attention and focus to flight parameters. In this research, a monitoring system and its algorithm are designed and tested for a target fixed-wing UAV. The Autonomy Monitoring Service (AMS) compares the real vehicle or simulated Vehicle with a similar simulated vehicle using Software …


Work-In-Progress: Augmented Reality System For Vehicle Health Diagnostics And Maintenance, Yuzhong Shen, Anthony W. Dean, Rafael Landaeta Jun 2020

Work-In-Progress: Augmented Reality System For Vehicle Health Diagnostics And Maintenance, Yuzhong Shen, Anthony W. Dean, Rafael Landaeta

Electrical & Computer Engineering Faculty Publications

This paper discusses undergraduate research to develop an augmented reality (AR) system for diagnostics and maintenance of the Joint Light Tactical Vehicle (JLTV) employed by U.S. Army and U.S. Marine Corps. The JLTV’s diagnostic information will be accessed by attaching a Bluetooth adaptor (Ford Reference Vehicle Interface) to JLTV’s On-board diagnostics (OBD) system. The proposed AR system will be developed for mobile devices (Android and iOS tablets and phones) and it communicates with the JLTV’s OBD via Bluetooth. The AR application will contain a simplistic user interface that reads diagnostic data from the JLTV, shows vehicle sensors, and allows users …


A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu Jun 2020

A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu

Master's Theses

A numerical study was conducted to determine the effect of changing the camber of a winglet on the efficiency of a wing in two distinct flight conditions. Camber was altered via a simple plain flap deflection in the winglet, which produced a constant camber change over the winglet span. Hinge points were located at 20%, 50% and 80% of the chord and the trailing edge was deflected between -5° and +5°. Analysis was performed using a combination of three-dimensional vortex lattice method and two-dimensional panel method to obtain aerodynamic forces for the entire wing, based on different winglet camber configurations. …


Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima Jun 2020

Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima

Master's Theses

Currently, the South Pole has a large data problem. It is estimated that 1.2 TB of data is being produced every day, but less than 500 GB of that data is being uploaded via aging satellites to researchers in other parts of the world. This requires those at the South Pole to analyze the data and carefully select the parts to send, possibly missing out on vital scientific information. The South Pole Carrier Pigeon will look to bridge this data gap.

The Carrier Pigeon will be a small unmanned aerial vehicle that will carry a 30 TB solid-state hard drive …


Congressional Committee Resources On Space Policy During The 115th Congress (2017-2018): Providing Context And Insight Into Us Government Space Policy, Bert Chapman May 2020

Congressional Committee Resources On Space Policy During The 115th Congress (2017-2018): Providing Context And Insight Into Us Government Space Policy, Bert Chapman

Libraries Faculty and Staff Presentations

Article 1 of the US Constitution assigns the US Congress numerous responsibilities. These include creating new laws, revising existing laws, funding government programs, and conducting oversight of these programs' performance. Oversight of US Government agency space policy programs is executed by various congressional space policy committees including the House and Senate Science Committees, Armed Services, and Appropriations Committees. These committees conduct many public hearings on space policy, which invite expert witnesses to testify on US space policy programs and feature debate on the strengths and weaknesses of these programs. Documentation produced by these committees is widely available to the public, …


Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet May 2020

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) expand the available mission-space for a wide range of budgets. Using MATLAB, this project has developed a six degree of freedom (6DOF) simulation of UAV flight, an Extended Kalman Filter (EKF), and an algorithm for localizing radioactive sources using low-cost hardware. The EKF uses simulated low-cost instruments in an effort to estimate the UAV state throughout simulated flight.

The 6DOF simulates aerodynamics, physics, and controls throughout the flight and provides outputs for each time step. Additionally, the 6DOF simulation offers the ability to control UAV flight via preset waypoints or in realtime via keyboard input.

Using …


Towards Gross-Pitaevskiian Description Of Solar System & Galaxies, Florentin Smarandache, Victor Christianto, Yunita Umniyati May 2020

Towards Gross-Pitaevskiian Description Of Solar System & Galaxies, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper, we argue that Gross-Pitaevskii model can be a more complete description of both solar system and spiral galaxies, especially taking into account the nature of chirality and vortices in galaxies. We also hope to bring out some correspondence among existing models, e.g., the topological vortex approach, Burgers equation in the light of KAM theory, and the Cantorian Navier-Stokes approach. We hope further investigation can be done around this line of approach.


Supercritical Carbon Dioxide Based Heat Exchanger On The Martian, Sarah Guinn Apr 2020

Supercritical Carbon Dioxide Based Heat Exchanger On The Martian, Sarah Guinn

Discovery Day - Prescott

The use of supercritical carbon dioxide (sCO2) in power cycles has been fairly new in the last decade. Due to this, there is a lack in research for both terrestrial and extraterrestrial applications. The purpose of this project is to utilize sCO2 as a working fluid and design and optimize a Brayton Cycle based heat exchanger on the Martian surface. Due to the lack of water on Mars, this research will provide a stronger analysis of planetary based drycooling processes in low atmospheric pressure and colder temperatures. We have been conducting an in-depth analysis of the heat exchanger by modeling …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Rotorcraft Blade Angle Calibration Methods, Brian David Calvert Jr. Apr 2020

Rotorcraft Blade Angle Calibration Methods, Brian David Calvert Jr.

Mechanical & Aerospace Engineering Theses & Dissertations

The most vital system of a rotorcraft is the rotor system due to its effects on the overall flight quality of the vehicle. Therefore, it is of importance to be able to accurately determine blade position during flight so that fine adjustments can be made to ensure a safe and efficient flight. In this study, a current calibration method focusing on the pitch, flap, and lead-lag blade angles is analyzed and found to have larger than acceptable error associated with the sensor calibrations. A literature review is conducted which reveals four novel methods that can potentially increase the accuracy of …


Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki Mar 2020

Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki

Theses and Dissertations

Performing flight tests is a natural part of researching cutting edge sensors and filters for sensor integration. Unfortunately, tests are expensive, and typically take many months of planning. A sensible goal would be to make previously collected data readily available to researchers for future development. The Air Force Institute of Technology (AFIT) has hundreds of data logs potentially available to aid in facilitating further research in the area of navigation. A database would provide a common location where older and newer data sets are available. Such a database must be able to store the sensor data, metadata about the sensors, …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Avia 201 Project 1 Windtunnel Lab Form Ver 1.20 20200323, Nihad E. Daidzic Mar 2020

Avia 201 Project 1 Windtunnel Lab Form Ver 1.20 20200323, Nihad E. Daidzic

Aviation Department Publications

To introduce aviation/aeronautics/aerospace students to wind tunnel(s) and methods used in experimental identification of various aerodynamic (and stability) coefficients of airfoils (2D), wings (3D) and scale models.


Cyber Risk Assessment And Scoring Model For Small Unmanned Aerial Vehicles, Dillon M. Pettit Mar 2020

Cyber Risk Assessment And Scoring Model For Small Unmanned Aerial Vehicles, Dillon M. Pettit

Theses and Dissertations

The commercial-off-the-shelf small Unmanned Aerial Vehicle (UAV) market is expanding rapidly in response to interest from hobbyists, commercial businesses, and military operators. The core commercial mission set directly relates to many current military requirements and strategies, with a priority on short range, low cost, real time aerial imaging, and limited modular payloads. These small vehicles present small radar cross sections, low heat signatures, and carry a variety of sensors and payloads. As with many new technologies, security seems secondary to the goal of reaching the market as soon as innovation is viable. Research indicates a growth in exploits and vulnerabilities …


Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen Mar 2020

Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen

Theses and Dissertations

Laser shock peening (LSP) is a form of work hardening by means of laser induced pressure impulse. LSP imparts compressive residual stresses which can improve fatigue life of metallic alloys for structural use. The finite element modeling (FEM) of LSP is typically done by applying an assumed pressure impulse, as useful experimental measurement of this pressure impulse has not been adequately accomplished. This shortfall in the field is a current limitation to the accuracy of FE modeling, and was addressed in the current work. A novel method was tested to determine the pressure impulse shape in time and space by …