Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Thresholds And Drivers Of Coral Calcification Responses To Climate Change, Niklas Kornder, Bernhard Riegl, Joana Figueiredo Aug 2018

Thresholds And Drivers Of Coral Calcification Responses To Climate Change, Niklas Kornder, Bernhard Riegl, Joana Figueiredo

Marine & Environmental Sciences Faculty Articles

Increased temperature and CO2 levels are considered key drivers of coral reef degradation. However, individual assessments of ecological responses (calcification) to these stressors are often contradicting. To detect underlying drivers of heterogeneity in coral calcification responses, we developed a procedure for the inclusion of stress–effect relationships in ecological meta‐analyses. We applied this technique to a dataset of 294 empirical observations from 62 peer‐reviewed publications testing individual and combined effects of elevated temperature and pCO2 on coral calcification. Our results show an additive interaction between warming and acidification, which reduces coral calcification by 20% when pCO2 levels exceed …


Taking The Metabolic Pulse Of The World's Coral Reefs, Tyler Cyronak, Andreas J. Andersson, Chris Langdon, Rebecca Albright, Nicholas R. Bates, Ken Caldeira, Renee Carlton, Jorge E. Corredor, Rob B. Dunbar, Ian Enochs, Jonathan Erez, Bradley D. Eyre, Jean-Pierre Gattuso, Dwight Gledhill, Hajime Kayanne, David I. Kline, David A. Koweek, Coulson Lantz, Boaz Lazar, Derek Manzello, Ashly Mcmahon, Melissa Melendez, Heather N. Page, Isaac R. Santos, Kai G. Schulz, Emily Shaw, Jacob Silverman, Atsushi Suzuki, Lida Teneva, Atsushi Watanabe, Shoji Yamamoto Jan 2018

Taking The Metabolic Pulse Of The World's Coral Reefs, Tyler Cyronak, Andreas J. Andersson, Chris Langdon, Rebecca Albright, Nicholas R. Bates, Ken Caldeira, Renee Carlton, Jorge E. Corredor, Rob B. Dunbar, Ian Enochs, Jonathan Erez, Bradley D. Eyre, Jean-Pierre Gattuso, Dwight Gledhill, Hajime Kayanne, David I. Kline, David A. Koweek, Coulson Lantz, Boaz Lazar, Derek Manzello, Ashly Mcmahon, Melissa Melendez, Heather N. Page, Isaac R. Santos, Kai G. Schulz, Emily Shaw, Jacob Silverman, Atsushi Suzuki, Lida Teneva, Atsushi Watanabe, Shoji Yamamoto

Marine & Environmental Sciences Faculty Articles

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) …


Expected Limits On The Ocean Acidification Buffering Potential Of A Temperate Seagrass Meadow, David A. Koweek, R. C. Zimmerman, Kathryn M. Hewett, Brian Gaylord, Sarah N. Giddings, Kerry J. Nickols, Jennifer L. Ruesink, John J. Stachowicz, Yuichiro Takeshita, Ken Caldeira Jan 2018

Expected Limits On The Ocean Acidification Buffering Potential Of A Temperate Seagrass Meadow, David A. Koweek, R. C. Zimmerman, Kathryn M. Hewett, Brian Gaylord, Sarah N. Giddings, Kerry J. Nickols, Jennifer L. Ruesink, John J. Stachowicz, Yuichiro Takeshita, Ken Caldeira

OES Faculty Publications

Ocean acidification threatens many marine organisms, especially marine calcifiers. The only global‐scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless, interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidification imposes on natural communities, including ones important to humans. Protection of seagrass meadows has been considered as a possible approach for localized mitigation of ocean acidification due to their large standing stocks of organic carbon and high productivity. Yet much work remains to constrain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a biogeochemical box model to …