Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

High Energy Density In Azobenzene-Based Materials For Photo-Thermal Batteries Via Controlled Polymer Architecture And Polymer-Solvent Interactions, Seung Pyo Jeong, Lawrence A. Renna, Connor J. Boyle, Hyunwook S. Kwak, Edward Harder, Wolfgang Damm, Dhandapani Venkataraman Jan 2017

High Energy Density In Azobenzene-Based Materials For Photo-Thermal Batteries Via Controlled Polymer Architecture And Polymer-Solvent Interactions, Seung Pyo Jeong, Lawrence A. Renna, Connor J. Boyle, Hyunwook S. Kwak, Edward Harder, Wolfgang Damm, Dhandapani Venkataraman

Chemistry Department Faculty Publication Series

Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.


Comparative Study Of Multicellular Tumor Spheroid Formation Methods And Implications For Drug Screening, Maria F. Gencoglu, Lauren E. Barney, Christopher L. Hall, Elizabeth A. Brooks, Alyssa D. Schwartz, Daniel C. Corbett, Kelly R. Stevens, Shelly Peyton Jan 2017

Comparative Study Of Multicellular Tumor Spheroid Formation Methods And Implications For Drug Screening, Maria F. Gencoglu, Lauren E. Barney, Christopher L. Hall, Elizabeth A. Brooks, Alyssa D. Schwartz, Daniel C. Corbett, Kelly R. Stevens, Shelly Peyton

Chemical Engineering Faculty Publication Series

Improved in vitro models are needed to better understand cancer progression and bridge the gap between in vitro proof-of-concept studies, in vivo validation, and clinical application. Multicellular tumor spheroids (MCTS) are a popular method for three-dimensional (3D) cell culture, because they capture some aspects of the dimensionality, cell–cell contact, and cell–matrix interactions seen in vivo. Many approaches exist to create MCTS from cell lines, and they have been used to study tumor cell invasion, growth, and how cells respond to drugs in physiologically relevant 3D microenvironments. However, there are several discrepancies in the observations made of cell behaviors when comparing …