Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Aeromagnetic, Gravity, And Differential Interferometric Synthetic Aperture Radar Analyses Reveal The Causative Fault Of The 3 April 2017 MW 6.5 Moiyabana, Botswana, Earthquake, Folarin Kolawole, Estella A. Atekwana, S. Malloy, Dorothy Sarah Stamps, Raphael Grandin, Mohamed G. Abdel Salam, Khumo Leseane, Elisha M. Shemang Sep 2017

Aeromagnetic, Gravity, And Differential Interferometric Synthetic Aperture Radar Analyses Reveal The Causative Fault Of The 3 April 2017 MW 6.5 Moiyabana, Botswana, Earthquake, Folarin Kolawole, Estella A. Atekwana, S. Malloy, Dorothy Sarah Stamps, Raphael Grandin, Mohamed G. Abdel Salam, Khumo Leseane, Elisha M. Shemang

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

On 3 April 2017, a Mw 6.5 earthquake struck Moiyabana, Botswana, nucleating at >20 km focal depth within the Paleoproterozoic Limpopo-Shashe orogenic belt separating the Archean Zimbabwe and Kaapvaal Cratons. We investigate the lithospheric structures associated with this earthquake using high-resolution aeromagnetic and gravity data integrated with Differential Interferometric Synthetic Aperture Radar (DInSAR) analysis. Here we present the first results that provide insights into the tectonic framework of the earthquake. The ruptured fault trace delineated by DInSAR aligns with a distinct NW striking and NE dipping magnetic lineament within the Precambrian basement. The fault plane solution and numerical modeling …


Imaging Bioturbation In Supratidal Carbonates: Non-Invasive Field Techniques Enhance Neoichnological And Zoogeomorphological Research, San Salvador, The Bahamas, Karen Kopcznski, Ilya Buynevich, H. Allen Curran, Jon Caris, Jonathan Nyquist Jan 2017

Imaging Bioturbation In Supratidal Carbonates: Non-Invasive Field Techniques Enhance Neoichnological And Zoogeomorphological Research, San Salvador, The Bahamas, Karen Kopcznski, Ilya Buynevich, H. Allen Curran, Jon Caris, Jonathan Nyquist

Geosciences: Faculty Publications

A case study in unconsolidated carbonates on San Salvador Island, The Bahamas, utilized high-frequency (800 MHz) georadar imaging to augment existing methodologies (burrow counts and measurements, casting) in brachyuran bioturbation research (Ocypode quadrata and Gecarcinus lateralis), and as part of a new dataset characterizing blue land crab (Cardisoma guanhumi) burrows. Non-invasive techniques such as ground-penetrating radar (GPR) can complement traditional field surveys aimed at quantifying mesoscale bioturbation in modern settings. These methods can establish diagnostic features for tracemaker identification and refine existing ichnofacies models. Drone-mounted aerial coverage provided the first high-resolution images of the micro-topography and …


St. Louis Area Earthquake Hazards Mapping Project: Seismic And Liquefaction Hazard Maps, Chris H. Cramer, Robert A. Bauer, Jaewon Chung, J. David Rogers, Larry Pierce, Vicki Voigt, Brad Mitchell, David Gaunt, Robert A. Williams, David J. Hoffman, Gregory L. Hempen, Phyllis J. Steckel, Oliver Salz Boyd, Connor M. Watkins, Kathleen B. Tucker, Natasha S. Mccallister Jan 2017

St. Louis Area Earthquake Hazards Mapping Project: Seismic And Liquefaction Hazard Maps, Chris H. Cramer, Robert A. Bauer, Jaewon Chung, J. David Rogers, Larry Pierce, Vicki Voigt, Brad Mitchell, David Gaunt, Robert A. Williams, David J. Hoffman, Gregory L. Hempen, Phyllis J. Steckel, Oliver Salz Boyd, Connor M. Watkins, Kathleen B. Tucker, Natasha S. Mccallister

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near-surface shear-wave velocity model in a 1D equivalent- linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses …