Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Physical Sciences and Mathematics

Myofilament Calcium Sensitivity: Consequences Of The Effective Concentration Of Troponin I, Jalal K. Siddiqui, Svetlana B. Tikunova, Shane D. Walton, Bin Liu, Meredith Meyer, Pieter P. De Tombe, Nathan Neilson, Peter M. Kekenes-Huskey, Hussam E. Salhi, Paul M.L. Janssen, Brandon J. Biesiadecki, Jonathan P. Davis Dec 2016

Myofilament Calcium Sensitivity: Consequences Of The Effective Concentration Of Troponin I, Jalal K. Siddiqui, Svetlana B. Tikunova, Shane D. Walton, Bin Liu, Meredith Meyer, Pieter P. De Tombe, Nathan Neilson, Peter M. Kekenes-Huskey, Hussam E. Salhi, Paul M.L. Janssen, Brandon J. Biesiadecki, Jonathan P. Davis

Chemistry Faculty Publications

Control of calcium binding to and dissociation from cardiac troponin C (TnC) is essential to healthy cardiac muscle contraction/relaxation. There are numerous aberrant post-translational modifications and mutations within a plethora of contractile, and even non-contractile, proteins that appear to imbalance this delicate relationship. The direction and extent of the resulting change in calcium sensitivity is thought to drive the heart toward one type of disease or another. There are a number of molecular mechanisms that may be responsible for the altered calcium binding properties of TnC, potentially the most significant being the ability of the regulatory domain of TnC to …


Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov Nov 2016

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov

Chemistry Faculty Publications

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by …


Grain Boundary Induced Bias Instability In Soluble Acene-Based Thin-Film Transistors, Ky V. Nguyen, Marcia M. Payne, John E. Anthony, Jung Hun Lee, Eunjoo Song, Boseok Kang, Kilwon Cho, Wi Hyoung Lee Sep 2016

Grain Boundary Induced Bias Instability In Soluble Acene-Based Thin-Film Transistors, Ky V. Nguyen, Marcia M. Payne, John E. Anthony, Jung Hun Lee, Eunjoo Song, Boseok Kang, Kilwon Cho, Wi Hyoung Lee

Chemistry Faculty Publications

Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant …


Relating Side Chain Organization Of Pnipam With Its Conformation In Aqueous Methanol, Debashish Mukherji, Manfred Wagner, Mark D. Watson, Svenja Winzen, Tiago E. E. De Oliveira, Carlos M. Marques, Kurt Kremer Sep 2016

Relating Side Chain Organization Of Pnipam With Its Conformation In Aqueous Methanol, Debashish Mukherji, Manfred Wagner, Mark D. Watson, Svenja Winzen, Tiago E. E. De Oliveira, Carlos M. Marques, Kurt Kremer

Chemistry Faculty Publications

Combining nuclear magnetic resonance (NMR), dynamic light scattering (DLS), and μs long all-atom simulations with two million particles, we establish a delicate correlation between increased side chain organization of PNIPAm and its collapse in aqueous methanol mixtures. We find that the preferential binding of methanol with PNIPAm side chains, bridging distal monomers along the polymer backbone, results in increased organization. Furthermore, methanol–PNIPAm preferential binding is dominated by hydrogen bonding. Our findings reveal that the collapse of PNIPAm is dominated by enthalpic interactions and that the standard poor solvent (entropic) effects play no major role.


Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker Sep 2016

Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

A novel cyclic flow photobioreactor (PBR) for the capture and recycle of CO2 using microalgae was designed and deployed at a coal-fired power plant (Duke Energy’s East Bend Station). The PBR was operated continuously during the period May–September 2015, during which algae productivity of typically 0.1–0.2 g/(L day) was obtained. Maximum CO2 capture efficiency was achieved during peak sunlight hours, the largest recorded CO2 emission reduction corresponding to a value of 81 % (using a sparge time of 5 s/min). On average, CO2 capture efficiency during daylight hours was 44 %. The PBR at East Bend …


0+ States In 130,132Xe: A Search For E(5) Behavior, Erin E. Peters, T. J. Ross, S. F. Ashley, Anagha Chakraborty, Benjamin P. Crider, M. D. Hennek, Sinong Liu, Marcus T. Mcellistrem, Sharmistha Mukhopadhyay, Francisco M. Prados-Estévez, Anthony Paul Ramirez, J. S. Thrasher, Steven W. Yates Aug 2016

0+ States In 130,132Xe: A Search For E(5) Behavior, Erin E. Peters, T. J. Ross, S. F. Ashley, Anagha Chakraborty, Benjamin P. Crider, M. D. Hennek, Sinong Liu, Marcus T. Mcellistrem, Sharmistha Mukhopadhyay, Francisco M. Prados-Estévez, Anthony Paul Ramirez, J. S. Thrasher, Steven W. Yates

Chemistry Faculty Publications

The level structures of 130,132Xe were studied with the inelastic neutron scattering reaction followed by γ-ray detection. Level lifetimes were measured using the Doppler-shift attenuation method and low-lying excited states in these nuclei were characterized. With a focus on the decay properties of the 0+ states, these nuclei were examined as representations of the E(5) critical-point symmetry.


Mutation Linked To Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Reduces Low-Sensitivity Α4Β2, And Increases Α5Α4Β2, Nicotinic Receptor Surface Expression, Weston A. Nichols, Brandon J. Henderson, Christopher B. Marotta, Caroline Y. Yu, Chris Richards, Dennis A. Dougherty, Henry A. Lester, Bruce N. Cohen Jun 2016

Mutation Linked To Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Reduces Low-Sensitivity Α4Β2, And Increases Α5Α4Β2, Nicotinic Receptor Surface Expression, Weston A. Nichols, Brandon J. Henderson, Christopher B. Marotta, Caroline Y. Yu, Chris Richards, Dennis A. Dougherty, Henry A. Lester, Bruce N. Cohen

Chemistry Faculty Publications

A number of mutations in α4β2-containing (α4β2*) nicotinic acetylcholine (ACh) receptors (nAChRs) are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), including one in the β2 subunit called β2V287L. Two α4β2* subtypes with different subunit stoichiometries and ACh sensitivities co-exist in the brain, a high-sensitivity subtype with (α4)2(β2)3 subunit stoichiometry and a low-sensitivity subtype with (α4)3(β2)2 stoichiometry. The α5 nicotinic subunit also co-assembles with α4β2 to form a high-sensitivity α5α4β2 nAChR. Previous studies suggest that the β2V287L mutation suppresses low-sensitivity α4β2* nAChR expression in a knock-in mouse model and also that α5 co-expression …


An Experimental And Theoretical Study Of Ã2A"Π–X~2A' Band System Of The Jet-Cooled Hbbr/Dbbr Free Radical, Mohammed Gharaibeh, Dennis J. Clouthier, Riccardo Tarroni Jun 2016

An Experimental And Theoretical Study Of Ã2A"Π–X~2A' Band System Of The Jet-Cooled Hbbr/Dbbr Free Radical, Mohammed Gharaibeh, Dennis J. Clouthier, Riccardo Tarroni

Chemistry Faculty Publications

The electronic spectra of the HBBr and DBBr free radicals have been studied in depth. These species were prepared in a pulsed electric discharge jet using a precursor mixture of BBr3 vapor and H2 or D2 in high pressure argon. Transitions to the electronic excited state of the jet-cooled radicals were probed with laser-induced fluorescence and the ground state energy levels were measured from the single vibronic level emission spectra. HBBr has an extensive band system in the red which involves a linear-bent transition between the two Renner-Teller components of what would be a 2Π state …


Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman Jun 2016

Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging …


Indacenodibenzothiophenes: Synthesis, Optoelectronic Properties And Materials Applications Of Molecules With Strong Antiaromatic Character, Jonathan L. Marshall, Kazuyuki Uchida, Conerd K. Frederickson, Christian Schütt, Andrew M. Zeidell, Katelyn P. Goetz, Tristan W. Finn, Karol Jarolimek, Lev N. Zakharov, Chad Risko, Rainer Herges, Oana D. Jurchescu, Michael M. Haley May 2016

Indacenodibenzothiophenes: Synthesis, Optoelectronic Properties And Materials Applications Of Molecules With Strong Antiaromatic Character, Jonathan L. Marshall, Kazuyuki Uchida, Conerd K. Frederickson, Christian Schütt, Andrew M. Zeidell, Katelyn P. Goetz, Tristan W. Finn, Karol Jarolimek, Lev N. Zakharov, Chad Risko, Rainer Herges, Oana D. Jurchescu, Michael M. Haley

Chemistry Faculty Publications

Indeno[1,2-b]fluorenes (IFs), while containing 4n π-electrons, are best described as two aromatic benzene rings fused to a weakly paratropic s-indacene core. In this study, we find that replacement of the outer benzene rings of an IF with benzothiophenes allows the antiaromaticity of the central s-indacene to strongly reassert itself. Herein we report a combined synthetic, computational, structural, and materials study of anti- and syn-indacenodibenzothiophenes (IDBTs). We have developed an efficient and scalable synthesis for preparation of a series of aryl- and ethynyl-substituted IDBTs. NICS-XY scans and ACID calculations reveal an increasingly antiaromatic core from …


Crystal Structures Of (Z)-5-[2-(Benzo[B]Thiophen-2-Yl)-1-(3,5-Dimethoxyphenyl)Ethenyl]-1H-Tetrazole And (Z)-5-[2-(Benzo[B]Thiophen-3-Yl)-1-(3,4,5-Trimethoxyphenyl)Ethenyl]-1H-Tetrazole, Narsimha Reddy Penthala, Jaishankar K. B. Yadlapalli, Sean Parkin, Peter A. Crooks May 2016

Crystal Structures Of (Z)-5-[2-(Benzo[B]Thiophen-2-Yl)-1-(3,5-Dimethoxyphenyl)Ethenyl]-1H-Tetrazole And (Z)-5-[2-(Benzo[B]Thiophen-3-Yl)-1-(3,4,5-Trimethoxyphenyl)Ethenyl]-1H-Tetrazole, Narsimha Reddy Penthala, Jaishankar K. B. Yadlapalli, Sean Parkin, Peter A. Crooks

Chemistry Faculty Publications

(Z)-5-[2-(Benzo[b]thio­phen-2-yl)-1-(3,5-di­meth­oxy­phen­yl)ethen­yl]-1H-tetrazole methanol monosolvate, C19H16N4O2S·CH3OH, (I), was prepared by the reaction of (Z)-3-(benzo[b]thio­phen-2-yl)-2-(3,5-di­meth­oxy­phen­yl)acrylo­nitrile with tri­butyl­tin azide via a [3 + 2]cyclo­addition azide condensation reaction. The structurally related compound (Z)-5-[2-(benzo[b]thio­phen-3-yl)-1-(3,4,5-tri­meth­oxy­phen­yl)ethen­yl]-1H-tetra­zole, C20H18N4O3S, (II), was prepared by the reaction of (Z)-3-(benzo[b]thio­phen-3-yl)-2-(3,4,5-tri­meth­oxy­phen­yl)acrylo­nitrile with tri­butyl­tin azide. Crystals of (I) have two mol­ecules in the asymmetric unit (Z′ = 2), whereas crystals of (II) have Z′ …


To Bend Or Not To Bend – Are Heteroatom Interactions Within Conjugated Molecules Effective In Dictating Conformation And Planarity?, Gary Conboy, Howard J. Spencer, Enrico Angioni, Alexander L. Kanibolotsky, Neil J. Findlay, Simon J. Coles, Claire Wilson, Mateusz B. Pitak, Chad Risko, Veaceslav Coropceanu, Jean-Luc Brédas, Peter J. Skabara Apr 2016

To Bend Or Not To Bend – Are Heteroatom Interactions Within Conjugated Molecules Effective In Dictating Conformation And Planarity?, Gary Conboy, Howard J. Spencer, Enrico Angioni, Alexander L. Kanibolotsky, Neil J. Findlay, Simon J. Coles, Claire Wilson, Mateusz B. Pitak, Chad Risko, Veaceslav Coropceanu, Jean-Luc Brédas, Peter J. Skabara

Chemistry Faculty Publications

We consider the roles of heteroatoms (mainly nitrogen, the halogens and the chalcogens) in dictating the conformation of linear conjugated molecules and polymers through non-covalent intramolecular interactions. Whilst hydrogen bonding is a competitive and sometimes more influential interaction, we provide unambiguous evidence that heteroatoms are able to determine the conformation of such materials with reasonable predictability.


Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman Apr 2016

Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

The reductive tricarboxylic acid (rTCA) cycle is an important central biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in water. This model reaction is chosen to systematically study the surface photoprocess occurring on ZnS in the presence of [Na2S] (1–10 mM) hole scavenger at 15 °C. Experiments at variable pH (5–10) indicate that monodissociated fumaric acid is the primary electron acceptor forming the monoprotic form of succinic acid. The following …


Light-Activated Compounds, Edith C. Glazer, David K. Heidary Mar 2016

Light-Activated Compounds, Edith C. Glazer, David K. Heidary

Chemistry Faculty Patents

The presently-disclosed subject matter includes light-activated ruthenium compounds. In some embodiments the compounds release one or more ligands when exposed to light, and in specific embodiments the light includes a wavelength of about 500 nm to about 1000 nm. The present compounds can also comprise an overall charge, wherein the overall charge can be a positive overall charge or a negative overall charge. Further still, embodiments include methods of treating cancer in a subject by administering a compound and then exposing a site of the subject to light.


Reducing Dynamic Disorder In Small-Molecule Organic Semiconductors By Suppressing Large-Amplitude Thermal Motions, Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Lang Jiang, Chris Warwick, Mark Nikolka, Guillaume Schweicher, Stephen G. Yeates, Yves Henri Geerts, John E. Anthony, Henning Sirringhaus Feb 2016

Reducing Dynamic Disorder In Small-Molecule Organic Semiconductors By Suppressing Large-Amplitude Thermal Motions, Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Lang Jiang, Chris Warwick, Mark Nikolka, Guillaume Schweicher, Stephen G. Yeates, Yves Henri Geerts, John E. Anthony, Henning Sirringhaus

Chemistry Faculty Publications

Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their …


Strain Effects On The Work Function Of An Organic Semiconductor, Yanfei Wu, Annabel R. Chew, Geoffrey A. Rojas, Gjergji Sini, Greg Haugstad, Alex Belianinov, Sergei V. Kalinin, Hong Li, Chad Risko, Jean-Luc Brédas, Alberto Salleo, C. Daniel Frisbie Feb 2016

Strain Effects On The Work Function Of An Organic Semiconductor, Yanfei Wu, Annabel R. Chew, Geoffrey A. Rojas, Gjergji Sini, Greg Haugstad, Alex Belianinov, Sergei V. Kalinin, Hong Li, Chad Risko, Jean-Luc Brédas, Alberto Salleo, C. Daniel Frisbie

Chemistry Faculty Publications

Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density …


Hyperfine Rather Than Spin Splittings Dominate The Fine Structure Of The B 4Σ-X 4Σ- Bands Of Aic, Dennis J. Clouthier, Aimable Kalume Jan 2016

Hyperfine Rather Than Spin Splittings Dominate The Fine Structure Of The B 4Σ-–X 4Σ- Bands Of Aic, Dennis J. Clouthier, Aimable Kalume

Chemistry Faculty Publications

Laser-induced fluorescence and wavelength resolved emission spectra of the B 4ΣX4Σ band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming b …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Towards An Understanding Of Pharmacologically Induced Intracellular Changes In Nicotinic Acetylcholine Receptors: A Fluorescence Microscopy Approach, Ashley M. Loe Jan 2016

Towards An Understanding Of Pharmacologically Induced Intracellular Changes In Nicotinic Acetylcholine Receptors: A Fluorescence Microscopy Approach, Ashley M. Loe

Theses and Dissertations--Chemistry

Upregulation of nicotinic acetylcholine receptors (nAChRs) is a well-documented response to chronic nicotine exposure. Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels consisting of alpha (α2-10) and beta (β2-4) subunits. Nicotine, an agonist of nAChRs, alters trafficking and assembly of some subtypes of nAChRs, leading to an increase in expression of high sensitivity receptors on the plasma membrane. These physiological changes in nAChRs are believed to contribute to nicotine addiction, although the mechanism of these processes has not been resolved. Recently, many studies have converged on the idea that nicotine induces upregulation by an intracellular mechanism. In this dissertation, expression …


The Development Of Colorimetric Assays To Determine The Identity And Frequency Of Specific Nucleobases In Dna Oligomers, Elizabeth Marie Thomas Jan 2016

The Development Of Colorimetric Assays To Determine The Identity And Frequency Of Specific Nucleobases In Dna Oligomers, Elizabeth Marie Thomas

Theses and Dissertations--Chemistry

Colorimetric methods combined with color-changing chemical probes are widely used as simple yet effective tools for identifying and quantifying a wide variety of molecules in solution. For nucleic acids (DNA and RNA), perhaps the most commonly used colorimetric probe is potassium permanganate, which can be used to identify single-stranded pyrimidines (thymine and cytosine) in polymers. Unfortunately, permanganate is not an effective probe for identifying purines (adenine and guanine), especially in the presence of the more reactive pyrimidines. Therefore, robust methods for discriminating between the purines remain elusive, thereby creating a barrier toward developing more complex colorimetric applications. In this dissertation, …


Ceria Based Catalysts For Low Temperature NoX Storage And Release, Samantha Jones Jan 2016

Ceria Based Catalysts For Low Temperature NoX Storage And Release, Samantha Jones

Theses and Dissertations--Chemistry

Model ceria catalysts were evaluated for NOx storage and desorption performance under lean conditions. Three different storage temperatures (80 °C, 120 °C, and 160 °C) were utilized to evaluate NOx storage. Higher temperatures resulted in higher NOx storage. It was observed that storage of platinum promoted ceria resulted in higher NOx storage compared to promotion with palladium. NOx desorption behavior of platinum promoted ceria indicated that the majority of NOx is released at high temperatures (> 350 °C), comparatively palladium promotion released more of the stored NOx at lower temperatures. Diffuse Reflectance Infrared Fourier …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …


Towards Catalytic Oxidative Depolymerization Of Lignin, Justin K. Mobley Jan 2016

Towards Catalytic Oxidative Depolymerization Of Lignin, Justin K. Mobley

Theses and Dissertations--Chemistry

Lignin is one of the most abundant and underutilized biopolymers on earth. Primarily composed on three monolignol units (sinapyl, coniferyl, and p-coumaryl alcohol), lignin is formed through a radical pathway resulting in an assortment of linkages, of which the β-O-4 linkage is the most prevalent (up to 60% in some hardwood species). In planta, lignin plays an important role in water transport and in protecting plants from chemical and biological attack. Traditional attempts to depolymerize lignin have focused on the cleavage of β-O-4 linkages via thermal or reductive routes. However these pathways lead to low-value, unstable product mixtures. Moreover, …


Towards An Understanding Of The Role Of Cation Packaging On Dna Protection From Oxidative Damage, Cody E. Gay Jan 2016

Towards An Understanding Of The Role Of Cation Packaging On Dna Protection From Oxidative Damage, Cody E. Gay

Theses and Dissertations--Chemistry

In sperm chromatin, DNA exists in a highly condensed state reaching a final volume roughly twenty times that of a somatic nucleus. For the vast majority (>90%) of sperm DNA in mammals, somatic-like histones are first replaced by transition proteins which in turn are replaced by arginine-rich protamines. This near crystalline organization of the DNA in mature sperm is thought crucial for both the transport and protection of genetic information since all DNA repair mechanisms are shut down. Recent studies show that increased DNA damage is linked to dysfunctions in replacing histones with protamines resulting in mispackaged DNA. This …


Design, Synthesis And Physicochemical Analysis Of Ruthenium(Ii) Polypyridyl Complexes For Application In Phototherapy And Nucleic Acid Sensing, Erin Melissa Wachter Jan 2016

Design, Synthesis And Physicochemical Analysis Of Ruthenium(Ii) Polypyridyl Complexes For Application In Phototherapy And Nucleic Acid Sensing, Erin Melissa Wachter

Theses and Dissertations--Chemistry

Current chemotherapeutics exhibit debilitating side effects as a result of their toxicity to healthy tissues. Reducing these side effects by developing chemotherapeutics with selectivity for cancer cells is an active area of research. Phototherapy is one promising modality for selective treatment, where drug molecules are “turned on” when irradiated with light, reducing damage to healthy tissues by spatially restricting the areas exposed to irradiation. A second approach to improve selectivity is to exploit the differences in cancerous versus healthy cells, such as increased metabolism and/or upregulation of cell surface receptors. Ruthenium(II) polypyridyl complexes are candidates for phototherapy due to their …


Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks Jan 2016

Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks

Theses and Dissertations--Chemistry

Development of synthetic routes toward two general organometallic frameworks was undertaken. The first project involved synthetic attempts of substituted and unsubstituted ferroceno[c]thiophene while the second one was the synthesis of 1,2-dithienylmetallocenes. The long-term goal of this work is to lay the foundations for study of electronic, electrochromic, redox, and optical properties of thiophene-based materials integrated with organometallic systems such as ferrocene, ruthenocene and cymantrene. The synthetic pathway for the target molecule in the first project involved converting 1,2-bis(hydroxymethyl)ferrocene to 1,2-bis(thiouroniummethyl)ferrocene with thiourea under acidic conditions. Refluxing the salt in base followed by acidification resulted in 1,2-bis(mercaptomethyl)ferrocene, which is …


Purin-6-One Derivatives As Phosphodiesterase-2 Inhibitors, Wei Yuan, Xin-Yun Zhao, Xi Chen, Chang-Guo Zhan Jan 2016

Purin-6-One Derivatives As Phosphodiesterase-2 Inhibitors, Wei Yuan, Xin-Yun Zhao, Xi Chen, Chang-Guo Zhan

Pharmaceutical Sciences Faculty Publications

A series of purin-6-one derivatives were synthesized, and their in vitro inhibitory activity against phosphodiesterase-2 (PDE2) was evaluated by using a fluorescence polarization assay. Three compounds, that are, 2j, 2p, and 2q, showed significant inhibitory activity against PDE2 with IC50 values of 1.73, 0.18, and 3.43 μM, respectively. Structure-activity relationship (SAR) analysis was performed to explore the relationship between the chemical structures of these compounds and their inhibitory activity. Compounds 2j, 2p, and 2q were further selected for molecular docking study. The docking results suggested that these ligands bind with hydrophobic pockets of …


Toxicity Of Engineered Nanomaterials To Plant Growth Promoting Rhizobacteria, Ricky W. Lewis Jan 2016

Toxicity Of Engineered Nanomaterials To Plant Growth Promoting Rhizobacteria, Ricky W. Lewis

Theses and Dissertations--Plant and Soil Sciences

Engineered nanomaterials (ENMs) have become ubiquitous in consumer products and industrial applications, and consequently the environment. Much of the environmentally released ENMs are expected to enter terrestrial ecosystems via land application of nano-enriched biosolids to agricultural fields. Among the organisms most likely to encounter nano-enriched biosolids are the key soil bacteria known as plant growth promoting rhizobacteria (PGPR). I reviewed what is known concerning the toxicological effects of ENMs to PGPR and observed the need for high-throughput methods to evaluate lethal and sublethal toxic responses of aerobic microbes. I addressed this issue by developing high-throughput microplate assays which allowed me …


The Optimization Of The Synthesis And Characterization Of Vapor-Liquid-Solid Grown Zno Nanowires, Silas R. Fiefhaus Jan 2016

The Optimization Of The Synthesis And Characterization Of Vapor-Liquid-Solid Grown Zno Nanowires, Silas R. Fiefhaus

Theses and Dissertations--Chemistry

ZnO nanowires are a promising material with great semiconductor properties. ZnO nanowires were prepared by carbothermal reduction and vapor-liquid-solid growth mechanism. Altering a variety of parameters ranging from mole to mole ratio of ZnO to C all the way to gas flow rate was examined. The nanowires were then characterized and their morphology examined under a SEM to observe what effect the parameter had on the morphology of the nanowires. From the experiments and the parameters tested it was observed that in order to produce the highest quality straight nanowires one should use a mole to mole ratio of ZnO …