Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physical Sciences and Mathematics

Molecules And Metals In The Distant Universe: Sub-Mm And Optical Spectroscopy Of Quasar Absorbers, Sean Stephen Morrison Dec 2015

Molecules And Metals In The Distant Universe: Sub-Mm And Optical Spectroscopy Of Quasar Absorbers, Sean Stephen Morrison

Theses and Dissertations

In order to gain a complete understanding of galaxy formation and evolution, knowledge of the atomic and molecular gas in the interstellar medium (ISM) is required. Absorption-line spectroscopy of quasars offers a powerful and luminosity independent probe of gas in distant galaxies. The Damped Lyman- systems (DLAs; 20.3 . log NHI ), are the highest neutral hydrogen column density quasar absorbers and contain a substantial fraction of the neutral gas available for star formation in the high-redshift Universe. This thesis presents a study of the metal content in some DLAs, based on optical spectroscopy, and a search for molecules based …


Optical Second Harmonic Generation In The Batio3 Phase On Magnetically Aligned Multiferroic Nanofibers, Katia Gasperi Dec 2015

Optical Second Harmonic Generation In The Batio3 Phase On Magnetically Aligned Multiferroic Nanofibers, Katia Gasperi

Theses and Dissertations

Multiferroic materials enable the exploration of electrical control of magnetic properties and vice versa. Their increasing interest is especially due to their potential applications in the industry of information storage. Thanks to recent progress in nanotechnology, they have also been found to have many other applications such as transducers and sensors, and they already occupy a unique place in the biomedical field. The objective of this project is to study multiferroic nanofibers made of cobalt ferrite CoFe2O4 (CFO) and barium titanate BaTiO3 (BTO) with a specific focus in the characterization of the ferroelectric phase. We researched the state of knowledge …


Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi Dec 2015

Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi

Theses and Dissertations

One of the major challenges posed to our quantitative understanding of structure, dynamics, and function of biological macromolecules has been the high level of complexity of biological structures. In the present work, we studied interactions between G protein-coupled receptors (GPCRs), and also introduced a theoretical model of relaxation in complex systems, in order to help understand interactions and relaxation in biological macromolecules.

GPCRs are the largest and most diverse family of membrane receptors that play key roles in mediating signal transduction between outside and inside of a cell. Oligomerization of GPCRs and its possible role in function and signaling currently …


Time-Resolved, Near Atomic Resolution Structural Studies At The Free Electron Laser, Jason James Tenboer Dec 2015

Time-Resolved, Near Atomic Resolution Structural Studies At The Free Electron Laser, Jason James Tenboer

Theses and Dissertations

Time-resolved serial femtosecond crystallography (TR-SFX) employs X-ray free electron lasers (XFELs) to provide X-ray pulses of femtosecond (fs) duration with 1012 photons per pulse. These XFELs are more than a billion times more brilliant than 3rd generation synchrotron X-ray sources. For structure determination, protein crystals on the micrometer length scale (microcrystals) are injected into the X-ray beam and the resulting diffraction patterns are recorded on fast-readout pixel detectors. Although these intense pulses deposit enough energy to ultimately destroy the protein, the processes that lead to diffraction occur before the crystal is destroyed. This so-called diffraction-before-destruction principle overcomes radiation damage, which …


First Astrophysical Observations With The Low Frequency All Sky Monitor, Emma Youmans Handzo Dec 2015

First Astrophysical Observations With The Low Frequency All Sky Monitor, Emma Youmans Handzo

Theses and Dissertations

The Low Frequency All Sky Monitor (LoFASM) is a radio telescope that consists of dipole antennas. It is sensitive to the frequencies of 10-88MHz. The primary science goals of LoFASM are to detect and study low frequency radio transient events and to develop and test low frequency interference (RFI) mitigation techniques.

Once a telescope starts collecting data, it is necessary to calibrate the telescope to convert the data into standard units. This will allow for scientific deductions to be made from the data. Once the calibration of a telescope is complete it is necessary to determine what astrophysical sources are …


Construction Of A 408 Nm Laser System For Use In Ion Interferometry, Lawrence Archibald Dec 2015

Construction Of A 408 Nm Laser System For Use In Ion Interferometry, Lawrence Archibald

Theses and Dissertations

This work reports on the construction of a 408 nm laser system designed to drive stimulated Raman transitions between the F = 4 and F = 5 2 S 1/2 states of 87 Sr + using the 2 P 3/2 state as the intermediate state. This laser system will be used as part of a 87 Sr + ion interferometer. This work also includes a discussion of relevant theory describing the interaction of the ions and laser, along with a calculation of the transition rates as a function of laser power and detuning.


Temperature Dependent Rubidium-Helium Line Shapes And Fine Structure Mixing Rates, Wooddy S. Miller Sep 2015

Temperature Dependent Rubidium-Helium Line Shapes And Fine Structure Mixing Rates, Wooddy S. Miller

Theses and Dissertations

Diode Pumped Alkali Lasers (DPALs) are a new type of laser that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in 2003 [48] they have just recently been scaled to the kilowatt power levels in 2012 [18]. To achieve these powers, the design of the gain cell relied on a set of incomplete line shape and kinetic data. The current focus areas of DPAL research are the continued power scaling of the systems and basic science research into the rates involved within the …


Experimental And Theoretical Basis For A Closed-Form Spectral Brdf Model, Samuel D. Butler Sep 2015

Experimental And Theoretical Basis For A Closed-Form Spectral Brdf Model, Samuel D. Butler

Theses and Dissertations

The microfacet class of BRDF models is frequently used to calculate optical scatter from realistic surfaces using geometric optics, but has the disadvantage of not being able to consider wavelength dependence. This dissertation works toward development of a closed-form approximation to the BRDF that is suitable for hyperspectral remote sensing by presenting measured BRDF data of 12 different materials at four different incident angles and up to seven different wavelengths between 3.39 and 10.6 micrometer. The data was intended to be fit to various microfacet BRDF models to determine an appropriate form of the wavelength scaling. However, when fitting the …


Theoretical Study Of Magnetoelectric Effects In Noncentrosymmetric And Cuprate Superconductors, Manoj Kumar Kashyap Aug 2015

Theoretical Study Of Magnetoelectric Effects In Noncentrosymmetric And Cuprate Superconductors, Manoj Kumar Kashyap

Theses and Dissertations

A century after the discovery of superconductivity at the lab of Kamerlingh Onnes

in 1911, it is noticeable that the phenomenon is quite ubiquitous in nature. In addi-

tion to a long list of superconducting alloys and compounds, almost half the elements

in the periodic table superconduct. By the late seventies, superconductivity was

thought to be well understood. This turned out to be a myth, with the discovery of

unconventional superconductors that defied Bardeen-Cooper-Schrieffer (BCS) theory.

Cuprates have been the most prominent example among them ever since their discov-

ery in 1986 by Bednorz and M ̈uller. Another example of …


Tunneling Experiments With Dirac Electrons In Graphene Heterojunctions, Shivani Rajput Aug 2015

Tunneling Experiments With Dirac Electrons In Graphene Heterojunctions, Shivani Rajput

Theses and Dissertations

This dissertation presents results of scanning tunneling microscopy/spectroscopy experiments performed on graphene, a two-dimensional membrane of carbon atoms arranged in a honeycomb lattice, where charge carriers behave like massless fermions described by the Dirac equation. Our findings demonstrate that interface engineering is a viable route to control and further enhance the electronic properties of graphene.

In the first experiment, by transferring chemical vapor deposited (CVD) graphene onto substrates of opposite polarization - H-terminated Si-face and C-faces of hexagonal silicon carbide (SiC), we show that the type of charge carrier in graphene can be controlled by substrate polarization. Furthermore, we find …


Vector Intensity And Holography-Based Acoustic Source Characterization Of A Military Jet Aircraft, Trevor Alden Stout Jul 2015

Vector Intensity And Holography-Based Acoustic Source Characterization Of A Military Jet Aircraft, Trevor Alden Stout

Theses and Dissertations

The scientific community has employed multiple methods to analyze and describe the jet noise emanating from the turbulent exhaust flow from modern military aircraft engines, with the goal that better characterization of the sound radiation will improve noise reduction efforts. This thesis utilizes three different approaches to characterize the noise source region from a static F-22A Raptor. First, the energy flow field along planes near the aircraft and along an arc is measured using a multidimensional vector intensity probe. The resulting vector intensity maps give a clear indication of the directionality of the noise as a function of frequency at …


Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson Jul 2015

Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson

Theses and Dissertations

The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation …


Identifying The Experimental And Theoretical Effective Characteristics Of Nonaligned Anisotropic Metamaterials, Michael R. Benson Jun 2015

Identifying The Experimental And Theoretical Effective Characteristics Of Nonaligned Anisotropic Metamaterials, Michael R. Benson

Theses and Dissertations

Previous research into anisotropic materials has assumed certain properties in order to make the underlying mathematics tractable. One of the assumptions is the alignment of the optical axes with the laboratory frame of reference, such as split-ring resonators lying at on the material plane. This assumption does not hold true for many metamaterials, such as tilted nanorods. Techniques such as ellipsometry are needed to analyze the effective characteristics of these highly anisotropic structures. In this research, tilted nanorods are analyzed using generalized ellipsometry to extract the indices of the optical axes. The underlying physics of ellipsometry is then used to …


Coupling Nuclear Induced Phonon Propagation With Conversion Electron Mössbauer Spectroscopy, Michael J. Parker Jun 2015

Coupling Nuclear Induced Phonon Propagation With Conversion Electron Mössbauer Spectroscopy, Michael J. Parker

Theses and Dissertations

Mössbauer spectroscopy is a very sensitive measurement technique (10-8 eV) which prompted motivation for the experiment described in this thesis. Namely, can a sensitive detection system be developed to detect nuclear recoils on the order of 10 to 100 of eVs? The hypothesis that this thesis tests is: Nuclear induced phonon bursts caused by Rutherford scattered alphas, decayed from 241Am, in a type-310 stainless steel material can couple with 7.3 keV conversion electron Mössbauer events at the other end of the material which will have a statistically significant effect on a Mössbauer spectrum. The phonon bursts produced by …


A Feasibility Study Of Photometric Reverberation Mapping With Meter-Class Telescopes, Carla June Carroll Jun 2015

A Feasibility Study Of Photometric Reverberation Mapping With Meter-Class Telescopes, Carla June Carroll

Theses and Dissertations

For the past several decades, mass estimates for supermassive black holes hosted by active galactic nuclei (AGN) have been made with the reverberation mapping (RM) technique. This methodology has produced consistent results and has been used to establish several relations that link the characteristics of the host galaxy to the mass of the central black hole. Despite this success, there are less than 50 AGN with black hole masses derived from RM. This low number is generally attributed to the difficulties in coordinating large blocks of telescope time for making simultaneous photometric and spectroscopic observations. Spectroscopic observations also generally require …


Characterization Of Order-Disorder Phase Transition Temperature For Select Nanoparticles, Gregory J. Sutherland Jun 2015

Characterization Of Order-Disorder Phase Transition Temperature For Select Nanoparticles, Gregory J. Sutherland

Theses and Dissertations

A method was found for creating ordered nanoparticles whose size and theoretical order-disorder temperature are ideal for study in the TEM. Specifically FePt, NiPt, FeNiPt and AuCu nanoparticles were studied. We were able to show how a nanoparticle's size affects its order-disorder temperature (Tod). When the particles were around 6 nm in diameter there was a shift downward of the Tod of 10-15 percent compared to the bulk. While particles around 10 nm in diameter experienced a downward shift of 0-6 percent compared to the bulk. One can approximate that particles less than 10-15 nm in diameter would show significant …


Gravitational Waves From Rotating Neutron Stars And Compact Binary Systems, Leslie Wade May 2015

Gravitational Waves From Rotating Neutron Stars And Compact Binary Systems, Leslie Wade

Theses and Dissertations

It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) …


Novel Two-Dimensional Nanomaterials And Their Gas Sensing Properties, Haihui Pu May 2015

Novel Two-Dimensional Nanomaterials And Their Gas Sensing Properties, Haihui Pu

Theses and Dissertations

Graphene, an atomic thin two-dimensional (2D) material with C atoms arranged in a honeycomb lattice, has sparked an unprecedented research interest across various scientific communities since its initial mechanical isolation in 2004. The linear energy dispersion with respect to the momentum within 1 eV around the Fermi level at the high symmetric K (Dirac) points in the Brillouin zone renders graphene a wonder material for scientists. However, graphene’s semimetallic nature significantly limits its high-end applications, e.g., in digital logic circuits. Therefore, continued efforts in opening the band gap for graphene and in searching for novel 2D semiconducting materials are rewarding. …


Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade May 2015

Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade

Theses and Dissertations

Gravitational-waves, as predicted by Einstein’s theory of general relativity, are oscillations of spacetime caused by the motion of masses. Although not yet directly detected, there is strong evidence for the existence of gravitational-waves. Detectable gravitational waves will come from dramatic astrophysical events, such as supernova explosions and collisions of black holes. The Laser Interferometer Gravitational-wave Observatory (LIGO) is a network of detectors designed to make the first direct detection of gravitational waves. The upgraded version of LIGO, Advanced LIGO (aLIGO), will offer a dramatic improvement in sensitivity that will virtually guarantee detections.

Gravitational-wave detections will not only illuminate mysterious astrophysical …


Self-Force On Accelerated Particles, Thomas Michael Linz May 2015

Self-Force On Accelerated Particles, Thomas Michael Linz

Theses and Dissertations

The likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of …


Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin May 2015

Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin

Theses and Dissertations

The direct detection of gravitational waves promises to open a new observational window onto the universe, and a number of large scale efforts are underway worldwide to make such a detection a reality. In this work, we attack some of the current problems in gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic strings, relic gravitational waves from inflation, and first order phase transitions in …


Theoretical And Experimental Investigations Of The Electromagnetic Fields And Energetic Particles Associated With Thunderstorms And Lightning, Shahab Arabshahi May 2015

Theoretical And Experimental Investigations Of The Electromagnetic Fields And Energetic Particles Associated With Thunderstorms And Lightning, Shahab Arabshahi

Theses and Dissertations

Despite more than 250 years after Benjamin Franklin’s kite experiment, lightning is still one of the mysteries of nature. We still do not understand how lightning works at the most basic level. Traditionally, lightning used to be studied using classical electrodynamics. However, in the last decade or so, the observation of many high energy phenomena associated with lightning and thunderclouds (e.g., X-rays from lightning leaders, TGFs, X-ray and gamma-ray glows from thunderstorms, etc.), started a new path in studying lightning and thunderstorms. It is suggested that energetic radiation in our atmosphere is the result of bremsstrahlung scattering of energetic electrons, …


Relativistic Runaway Electron Avalanches Inside The High Field Regions Of Thunderclouds, Eric Scott Cramer May 2015

Relativistic Runaway Electron Avalanches Inside The High Field Regions Of Thunderclouds, Eric Scott Cramer

Theses and Dissertations

In this dissertation, simplified equations describing the transport and energy spectrum of runaway electrons are derived from the basic kinematics of the continuity equations. These equations are useful in modeling the energy distribution of energetic electrons in strong electric fields, such as those found inside thunderstorms. Dwyer and Babich [2011] investigated the generation of low-energy electrons in relativistic runaway electron avalanches. The paper also developed simple analytical expressions to describe the detailed physics of Monte Carlo simulations of relativistic runaway electrons in air. In this work, the energy spectra of the runaway electron population are studied in detail. Dependence of …


Initiation Of Streamers From Thundercloud Hydrometeors And Implications To Lightning Initiation, Samaneh Sadighi May 2015

Initiation Of Streamers From Thundercloud Hydrometeors And Implications To Lightning Initiation, Samaneh Sadighi

Theses and Dissertations

Electric field values measured inside thunderclouds have consistently been reported to be up to an order of magnitude lower than the value required for the conventional electrical breakdown of air. This result has made it difficult to explain how lightning frequently occurs in thunderclouds. One theory that has been offered to explain the lightning initiation process is the theory of lightning initiation from hydrometeors. According to this theory, lightning can be initiated from electrical discharges originating around thundercloud water or ice particles in the measured thundercloud electric field. These particles, called hydrometeors, can cause significant enhancement of the thundercloud electric …


Sprite Streamer Formation And Propagation: Theory And Observations, Burcu Kosar May 2015

Sprite Streamer Formation And Propagation: Theory And Observations, Burcu Kosar

Theses and Dissertations

Sprites are finely-structured, large scale electrical discharges typically initiated near the lower boundary of the ionosphere at 70-85 km altitudes [Pasko, 2010; Ebert et al., 2010; Pasko et al., 2011, 2013; Liu, 2014; Liu et al., 2015b]. Their lateral extent is ∼5-10 km and vertical extent is ∼50 km, and hence the atmospheric volume electrically and chemically affected by sprites is thousands of cubic kilometers [Sentman et al., 1995; Lyons, 2006]. Halos are relatively uniform, descending glows that may give rise to more structured features, from which sprites are initiated. A large amount of observational [e.g., Gerken et al., 2000; …


Scaling Of An Optically Pumped Mid-Infrared Rubidium Laser, Paul J. Moran Mar 2015

Scaling Of An Optically Pumped Mid-Infrared Rubidium Laser, Paul J. Moran

Theses and Dissertations

An optically pumped mid-infrared rubidium (Rb) pulsed laser has been demonstrated in a heat pipe along the 62P3/2 - 62S1/2 transition at 2.730 µm and the 62P1/2 - 62S1/2 transition at 2.790 µm. The bleached limit, slope efficiency, and maximum laser output energy of the mid-IR Rb laser have been shown to scale linearly with increasing Rb density, contrary to prior laser demonstrations. A maximum output energy of 5 nJ per pulse had previously been observed before a rollover occurred in the scaling of output energy with Rb …


Absorption Spectroscopy Of Rubidium In An Alkali Metal Dispenser Cell And Bleached Wave Analysis, James M. Rosenthal Mar 2015

Absorption Spectroscopy Of Rubidium In An Alkali Metal Dispenser Cell And Bleached Wave Analysis, James M. Rosenthal

Theses and Dissertations

An absorption spectrum of a rubidium alkali metal dispenser (AMD) cell was obtained in order to determine the system s suitability for use in a diode pumped alkali laser (DPAL) and use in high-temperature spectroscopic studies. The AMD produced a concentration of 3.65 0.16 1010 cm-3, which is in the ideal range for Beer s Law region absorption spectroscopy, but too low to make a high-power DPAL in a 10 cm cell with a poor Q resonator. Before AMDs can be used to determine pressure broadening and shifting coefficients, issues concerning contamination and producing rubidium vapor at pressure must be …


Photon Sieve Bandwidth Broadening By Reduction Of Chromatic Aberration Effects Using Second-Stage Diffractive Optics, Christopher M. Tulip Mar 2015

Photon Sieve Bandwidth Broadening By Reduction Of Chromatic Aberration Effects Using Second-Stage Diffractive Optics, Christopher M. Tulip

Theses and Dissertations

A photon sieve is a lightweight diffractive optic which can be useful for space-based imaging applications. It is limited by chromatic aberration and a narrow bandwidth. A Fresnel zone plate is used to counteract this effect in a manner similar to that accomplished with a traditional holographic corrector. First, a radiometric analysis established a target for bandwidth improvement. Next, a sieve was designed, fabricated, and characterized. Third, the bandwidth-broadening correction scheme was developed to correct primary chromatic aberration. Finally, a zone plate was designed, fabricated, and tested. Performance of the corrected system was measured over the target bandwidth. The corrected …


Radio Emission Toward Regions Of Massive Star Formation In The Large Magellanic Cloud, Adam Johanson Mar 2015

Radio Emission Toward Regions Of Massive Star Formation In The Large Magellanic Cloud, Adam Johanson

Theses and Dissertations

Four regions of massive star formation in the Large Magellanic Cloud (LMC) were observed for water and methanol maser emission and radio continuum emission. A total of 42 radio detections were made including 27 new radio sources, four water masers, and eight compact HII regions. The lobes of a radio galaxy were resolved for the first time, and the host galaxy identified. Seven sources were associated with known massive young stellar objects (YSOs). A multi-wavelength analysis using both the infrared and radio spectrum was used to characterize the sources. Mid-infrared color-magnitude selection criteria for ultracompact HII (UCHII) regions in the …


Simulations Of Electron Trajectories In An Intense Laser Focus For Photon Scattering Experiments, Grayson J. Tarbox Mar 2015

Simulations Of Electron Trajectories In An Intense Laser Focus For Photon Scattering Experiments, Grayson J. Tarbox

Theses and Dissertations

An experiment currently underway at BYU is designed to test whether the size of a free electron wave packet affects the character of scattered radiation. Using a semi-classical argument wherein the wave packet is treated as a diffuse charge distribution, one would expect strong suppression of radiation in the direction perpendicular to the propagating field as the wave packet grows in size to be comparable to the wavelength of the driving field. If one disallows the interaction of the wave packet with itself, as is the case when calculating the rate of emission using QED, then regardless of size, the …