Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Tweakable Ciphers: Constructions And Applications, Robert Seth Terashima Aug 2015

Tweakable Ciphers: Constructions And Applications, Robert Seth Terashima

Dissertations and Theses

Tweakable ciphers are a building block used to construct a variety of cryptographic algorithms. Typically, one proves (via a reduction) that a tweakable-cipher-based algorithm is about as secure as the underlying tweakable cipher. Hence improving the security or performance of tweakable ciphers immediately provides corresponding benefits to the wide array of cryptographic algorithms that employ them. We introduce new tweakable ciphers, some of which have better security and others of which have better performance than previous designs. Moreover, we demonstrate that tweakable ciphers can be used directly (as opposed to as a building block) to provide authenticated encryption with associated …


Micro-Policies: Formally Verified, Tag-Based Security Monitors, Arthur Azevedo De Amorim, Maxime Denes, Nick Giannarakis, Cătălin Hriţcu, Benjamin C. Pierce, Antal Spector-Zabusky, Andrew Tolmach May 2015

Micro-Policies: Formally Verified, Tag-Based Security Monitors, Arthur Azevedo De Amorim, Maxime Denes, Nick Giannarakis, Cătălin Hriţcu, Benjamin C. Pierce, Antal Spector-Zabusky, Andrew Tolmach

Computer Science Faculty Publications and Presentations

Recent advances in hardware design have demonstrated mechanisms allowing a wide range of low-level security policies (or micro-policies) to be expressed using rules on metadata tags. We propose a methodology for defining and reasoning about such tag-based reference monitors in terms of a high-level “symbolic machine,” and we use this methodology to define and formally verify micro-policies for dynamic sealing, compartmentalization, control-flow integrity, and memory safety; in addition, we show how to use the tagging mechanism to protect its own integrity. For each micro-policy, we prove by refinement that the symbolic machine instantiated with the policy’s rules embodies a high-level …