Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 41

Full-Text Articles in Physical Sciences and Mathematics

Photonic Topological Chern Insulators Based On Tellegen Metacrystals, Daniel A. Jacobs, Andrey E. Miroshnichenko, Yuri S. Kivshar, Alexander B. Khanikaev Dec 2015

Photonic Topological Chern Insulators Based On Tellegen Metacrystals, Daniel A. Jacobs, Andrey E. Miroshnichenko, Yuri S. Kivshar, Alexander B. Khanikaev

Publications and Research

We demonstrate that topologically nontrivial states of light can be engineered in periodic photonic structures containing media with a Tellegen-type bianisotropic response. Whilst in such bianisotropic materials the time-reversal symmetry is broken, they are characterized by an intrinsic magnetic order which does not require macroscopic magnetization. Our design can therefore be considered as a direct analog of the solid state Chern insulator which exhibits a topological order in the absence of an external bias. Numerical simulations of such Tellegen photonic crystals reveal the existence of one way edge transport at domain walls and perfectly conducting boundaries not sensitive to structural …


Nmr Studies Of Solvent-Free Ceramic Composite Polymer Electrolytes—A Brief Review, Marc B. Berman, Steven Greenbaum Dec 2015

Nmr Studies Of Solvent-Free Ceramic Composite Polymer Electrolytes—A Brief Review, Marc B. Berman, Steven Greenbaum

Publications and Research

Polyether-based polymer electrolytes containing ceramic inorganic oxide fillers often exhibit improved mechanical and ion transport properties compared to their filler-free counterparts. The nature of local scale interactions that give rise to these enhanced properties is explored by nuclear magnetic resonance measurements.


Boundary Conditions As Dynamical Fields, V. Parameswaran Nair, Dimitra Karabali Dec 2015

Boundary Conditions As Dynamical Fields, V. Parameswaran Nair, Dimitra Karabali

Publications and Research

The possibility of treating boundary conditions in terms of a bilocal dynamical field is formalized in terms of a boundary action. This allows for a simple path-integral perturbation theory approach to physical effects such as radiation from a time-dependent boundary. The nature of the action which governs the dynamics of the bilocal field is investigated for a limited case (which includes the Robin boundary conditions).


D-Brane Instantons As Gauge Instantons In Orientifolds Of Chiral Quiver Theories, Sebastian Franco, Ander Retolaza, Angel Uranga Nov 2015

D-Brane Instantons As Gauge Instantons In Orientifolds Of Chiral Quiver Theories, Sebastian Franco, Ander Retolaza, Angel Uranga

Publications and Research

Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared end point of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the rst UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our …


Do All Bps Black Hole Microstates Carry Zero Angular Momentum?, Abishek Chowdhury, Richard S. Garavuso, Swapnamay Mondal, Ashoke Sen Nov 2015

Do All Bps Black Hole Microstates Carry Zero Angular Momentum?, Abishek Chowdhury, Richard S. Garavuso, Swapnamay Mondal, Ashoke Sen

Publications and Research

From the analysis of the near horizon geometry and supersymmetry algebra it has been argued that all the microstates of single centered BPS black holes with four unbroken supersymmetries carry zero angular momentum in the region of the moduli space where the black hole description is valid. A stronger form of the conjecture would be that the result holds for any sufficiently generic point in the moduli space. In this paper we set out to test this conjecture for a class of black hole microstates in type II string theory on T6 , represented by four stacks of D-branes wrapped …


A Geometric Approach To Quantum State Separation, E Bagan, V Yerokhin, A Shehu, Edgar Feldman, János A. Bergou Nov 2015

A Geometric Approach To Quantum State Separation, E Bagan, V Yerokhin, A Shehu, Edgar Feldman, János A. Bergou

Publications and Research

Probabilistic quantum state transformations can be characterized by the degree of state separation they provide. This, in turn, sets limits on the success rate of these transformations. We consider optimum state separation of two known pure states in the general case where the known states have arbitrary a priori probabilities. The problem is formulated from a geometric perspective and shown to be equivalent to the problem of finding tangent curves within two families of conics that represent the unitarity constraints and the objective functions to be optimized, respectively. We present the corresponding analytical solutions in various forms. In the limit …


Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni Nov 2015

Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle …


Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni Oct 2015

Hohenberg-Kohn Theorems In Electrostatic And Uniform Magnetostatic Fields, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle …


Probing Molecular Dynamics At The Nanoscale Via An Individual Paramagnetic Centre, T. Staudacher, N. Raatz, S. Pezzagna, J. Meijer, F. Reinhard, C. A. Meriles, J. Wrachtrup Oct 2015

Probing Molecular Dynamics At The Nanoscale Via An Individual Paramagnetic Centre, T. Staudacher, N. Raatz, S. Pezzagna, J. Meijer, F. Reinhard, C. A. Meriles, J. Wrachtrup

Publications and Research

We demonstrate a protocol using individual nitrogen-vacancy centres in diamond to observe the time evolution of proton spins from organic molecules located a few nanometres from the diamond surface. The protocol records temporal correlations among the interacting protons, and thus is sensitive to the local dynamics via its impact on the nuclear spin relaxation and interaction with the nitrogen vacancy. We gather information on the nanoscale rotational and translational diffusion dynamics by analysing the time dependence of the nuclear magnetic resonance signal. Applying this technique to liquid and solid samples, we find evidence that liquid samples form a semi-solid layer …


Another One Busts The Dust, Keiko Hiranaka Sep 2015

Another One Busts The Dust, Keiko Hiranaka

Dissertations, Theses, and Capstone Projects

Brown dwarfs are substellar objects with core temperatures insufficient for sustained hydrogen fusion. Their physical properties such as mass, temperature, and radius are similar to those of gas giant planets, so studying brown dwarfs may also benefit exoplanet studies.

There is a population of 'red' L dwarfs, which have redder J - K colors in the near-infrared than normal objects. Red L dwarfs include young, low-gravity objects, which are systematically red, and red field-gravity objects. The observed reddening in L dwarfs is not well explained by current atmosphere models.

We present an analysis of red L dwarfs using our model …


Friction, Avalanches And Phase Transitions In Granular Media., Aline Hubard Sep 2015

Friction, Avalanches And Phase Transitions In Granular Media., Aline Hubard

Dissertations, Theses, and Capstone Projects

We explore the microscopic interactions and properties of dry granular materials in the plane using experiments and simulations. We use statistics of this microscopic information to better understand and predict the bulk behavior and evolution of granular materials.

In the first part, we study the geometric structure of mechanically stable packings of frictional disks in configuration space. Our experimental setup contains frictional disks confined in a vertical plane and subject to a series of small amplitude vibrations that compact the system by reducing the friction between contacts during each vibration step. We find that the evolution of the packings forms …


Metasurfaces For Photon Sorting And Selective Absorption, Isroel Moshe Mandel Sep 2015

Metasurfaces For Photon Sorting And Selective Absorption, Isroel Moshe Mandel

Dissertations, Theses, and Capstone Projects

Metamaterials are a recent discovery gaining much interest due to their promising applications to multiple devices in sensing, imaging, photovoltaics, nonlinear optics, heat conversion, sorters, and multitudes of other devices. These metamaterials are made of subunits called meta-atoms which take a role similar to that of atoms in bulk crystals. However, unlike their atom counterparts, these meta-atoms are macroscopic and can be engineered to respond to a driving field in a desired way. Metasurfaces, the 2-dimensional analog of metamaterials, have been shown to possess the ability to control light in novel ways. In this work, we investigate a particular type …


Growth And Characterization Of Type-Ii Submonolayer Zncdte/Zncdse Quantum Dot Superlattices For Efficient Intermediate Band Solar Cells, Siddharth Dhomkar Sep 2015

Growth And Characterization Of Type-Ii Submonolayer Zncdte/Zncdse Quantum Dot Superlattices For Efficient Intermediate Band Solar Cells, Siddharth Dhomkar

Dissertations, Theses, and Capstone Projects

In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. The goal behind this study is to show the feasibility of this novel material system in fabricating an efficient intermediate band solar cell.

Intermediate band solar cells can potentially have an efficiency of 63.2% under full solar concentration, but the material systems investigated until now are far from optimum and are fraught with growth related issues including low quantum dot densities, presence of wetting layers, strain driven dislocations etc. Here, we have investigated a novel …


Accurate Deterministic Solutions For The Classic Boltzmann Shock Profile, Yubei Yue Sep 2015

Accurate Deterministic Solutions For The Classic Boltzmann Shock Profile, Yubei Yue

Dissertations, Theses, and Capstone Projects

The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, …


Propagation Of Non-Stationary Noise In Waveguides, Jonathan Samuel Ben-Benjamin Sep 2015

Propagation Of Non-Stationary Noise In Waveguides, Jonathan Samuel Ben-Benjamin

Dissertations, Theses, and Capstone Projects

This thesis consists of research regarding pulse and noise propagation in dispersive media. The research consists of three parts. In Part I we develop an approach for the propagation of non-stationary noise in waveguides, and in particular, we focus on the two-plate waveguide, which is a standard model for the ocean. he fundamental aim is to obtain the propagation of the space-time autocorrelation function. In our formulation, the noise is described by a Wigner spectrum, from which the autocorrelation function can be obtained. We discuss how to obtain the Wigner spectrum of a noise field from the Wigner spectrum of …


Optimal Measurements Tasks And Their Physical Realizations, Vadim Yerokhin Sep 2015

Optimal Measurements Tasks And Their Physical Realizations, Vadim Yerokhin

Dissertations, Theses, and Capstone Projects

This thesis reflects works previously published by the author and materials hitherto unpublished on the subject of quantum information theory. Particularly, results in optimal discrimination, cloning, and separation of quantum states, and their relationships, are discussed.

Our interest lies in the scenario where we are given one of two quantum states prepared with a known a-priori probability. We are given full information about the states and are assigned the task of performing an optimal measurement on the incoming state. Given that none of these tasks is in general possible to perform perfectly we must choose a figure of merit to …


Ordering And Topological Defects In Solids With Quenched Randomness, Thomas Chapman Proctor Sep 2015

Ordering And Topological Defects In Solids With Quenched Randomness, Thomas Chapman Proctor

Dissertations, Theses, and Capstone Projects

We explore multiple different examples of quenched randomness in systems with a continuous order parameter. In all these systems, it is shown that understanding the effects of topology is critical to the understanding of the effects of quenched randomness.

We consider n-component fixed-length order parameter interacting with a weak random field in d = 1,2,3 dimensions. Relaxation from the initially ordered state and spin-spin correlation functions have been studied on lattices containing hundreds of millions sites. At n - 1 < d presence of topological structures leads to metastability, with the final state depending on the initial condition. At n …


Hybridized Criticality And Elementary Excitations In Lihof4, Haifu Ma Sep 2015

Hybridized Criticality And Elementary Excitations In Lihof4, Haifu Ma

Dissertations, Theses, and Capstone Projects

In this dissertation, I study the magnetic properties of LiHoF4. Quantum criticality in rare earth ferromagnet LiHoF4 is complicated by the presence of strong crystal field and hyperfine interactions resulting, e.g., in incomplete mode softening reported by Rønnow et al. We construct a systematic framework for treating elementary excitations in this material across the phase diagram. These excitations interpolate between purely electronic, nuclear and lattice modes and exhibit two-types of quantum critical softening, both complete (as anticipated by elementary treatments, see e.g. Sachdev) but also incomplete, in close correspondence with nuclear scattering results.


Studies On Bell's Theorem, Veli Ugur Guney Sep 2015

Studies On Bell's Theorem, Veli Ugur Guney

Dissertations, Theses, and Capstone Projects

In this work we look for novel classes of Bell's inequalities and methods to produce them. We also find their quantum violations including, if possible, the maximum one.

The Jordan bases method that we explain in Chapter 2 is about using a pair of certain type of orthonormal bases whose spans are subspaces related to measurement outcomes of incompatible quantities on the same physical system. Jordan vectors are the briefest way of expressing the relative orientation of any two subspaces. This feature helps us to reduce the dimensionality of the parameter space on which we do searches for optimization. The …


Biophysical Characterization Of A De Novo Elastin, Kelly Nicole Greenland Sep 2015

Biophysical Characterization Of A De Novo Elastin, Kelly Nicole Greenland

Dissertations, Theses, and Capstone Projects

Natural human elastin is found in tissue such as the lungs, arteries, and skin. This protein is formed at birth with no mechanism present to repair or supplement the initial quantity formed. As a result, the functionality and durability of elastin's elasticity is critically important. To date, the mechanics of this ability to stretch and recoil is not fully understood. This study utilizes de novo protein design to create a small library of simplistic versions of elastin-like proteins, demonstrate the elastin-like proteins, maintain elastin's functionality, and inquire into its structure using solution nuclear magnetic resonance (NMR).

Elastin is formed from …


Order And Asymmetry In Jammed Systems, Zhusong Li Sep 2015

Order And Asymmetry In Jammed Systems, Zhusong Li

Dissertations, Theses, and Capstone Projects

Granular matter is composed of particles that are big enough that thermal effects may be neglected. We studied both granular flow and granular statics using numerical simulation. In granular flow, we simulated 2D granular flow in a hopper. A hopper is a container with an opening at the bottom. Simulated disks are placed in the hopper with the bottom closed and then released. We developed a new tangential force model to simulate hopper flow, that matches experiments and shows that the output flux is proportional to the bottom opening size to the 3/2 power. We also see clogging or jamming …


An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun Sep 2015

An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun

Publications and Research

In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ/μ. However, when vaccination is allowed the final density of recovered individual first increases and …


2d (0,2) Quiver Gauge Theories And D-Branes, Sebastian Franco, Dongwook Ghim, Sangmin Lee, Rak-Kyeong Seong, Daisuke Yokoyama Sep 2015

2d (0,2) Quiver Gauge Theories And D-Branes, Sebastian Franco, Dongwook Ghim, Sangmin Lee, Rak-Kyeong Seong, Daisuke Yokoyama

Publications and Research

We initiate a systematic study of 2d(0,2) quiver gauge theories on the world-volume of D1-branes probing singular toric Calabi-Yau 4-folds. We present an algorithm for efficiently calculating the classical mesonic moduli spaces of these theories, which cor-respond to the probed geometries. We also introduce a systematic procedure for constructing the gauge theories for arbitrary toric singularities by means of partial resolution, which translates to higgsing in the field theory. Finally, we introduce Brane Brick Models, a novel class of brane configurations that consist of D4-branes suspended from an NS5-brane wrap-ping a holomorphic surface, tessellating a 3-torus. Brane Brick Models are …


Bulk Equations Of Motion From Cft Correlators, Daniel N. Kabat, Gilad Lifschytz Sep 2015

Bulk Equations Of Motion From Cft Correlators, Daniel N. Kabat, Gilad Lifschytz

Publications and Research

ToO (1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the …


Singly-Spinning Black Rings Ind= 5 U(1)3 Supergravity, H. Lu, C. N. Pope, Justin F. Vázquez-Poritz, Zhibai Zhang Jun 2015

Singly-Spinning Black Rings Ind= 5 U(1)3 Supergravity, H. Lu, C. N. Pope, Justin F. Vázquez-Poritz, Zhibai Zhang

Publications and Research

We construct black ring solutions in five-dimensional U(1)3supergravity which carry three dipole charges, three electric charges and one angular momentum parameter.These solutions are written in a form that is sufficiently compact that their global and thermodynamic properties can be studied explicitly. In particular, we find that the Smarrformula is obeyed regardless of whether or not conical singularities are present, where as the first law of thermodynamics holds only in the absence of conical singularities. We also present black ring solutions with three background magnetic fields.


A Static And Dynamic Investigation Of Quantum Nonlinear Transport In Highly Dense And Mobile 2d Electron Systems, Scott A. Dietrich May 2015

A Static And Dynamic Investigation Of Quantum Nonlinear Transport In Highly Dense And Mobile 2d Electron Systems, Scott A. Dietrich

Dissertations, Theses, and Capstone Projects

Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these …


Quantum State Discrimination And Quantum Cloning: Optimization And Implementation, Andi Shehu May 2015

Quantum State Discrimination And Quantum Cloning: Optimization And Implementation, Andi Shehu

Dissertations, Theses, and Capstone Projects

In our work we explore the field of quantum state discrimination and quantum cloning. Recently the problem of optimal state discrimination with a Fixed Rate of Inconclusive Outcomes (FRIO strategy) has been solved for two pure quantum states and a few other highly symmetric cases. An optical implementation to FRIO for pure states is provided. The physical implementation can be carried out with the use of a six-port interferometer constructed with optical fibers beam splitters, phase shifters and mirrors. The input states are composed of qubits which are realized as photons in the dual-rail representation. The non-unitary measurements are carried …


Exploring Non-Equilibrium Dynamics In Time Dependent Density Functional Theory, Kai Luo May 2015

Exploring Non-Equilibrium Dynamics In Time Dependent Density Functional Theory, Kai Luo

Dissertations, Theses, and Capstone Projects

Time-dependent density functional theory (TDDFT) is a method of choice for calculations of excitation spectra and response properties in materials science and quantum chemistry. The many-body problem is mapped into a set of one-body Schrödinger equations, called the Kohn-Sham (KS) equations. In principle, the one-body potential can be chosen such that the density of the interacting system is exactly reproduced by the KS system. However, one component of the one-body potential has to be approximated and is typically "adiabatic". Though in linear response regime adiabatic approximations give quite good spectra, it is important to explore their performances in non-equilibrium dynamics. …


Disorder Effects In Charge Transport And Spin Response Of Topological Insulators, Lukas Zhonghua Zhao May 2015

Disorder Effects In Charge Transport And Spin Response Of Topological Insulators, Lukas Zhonghua Zhao

Dissertations, Theses, and Capstone Projects

Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in …


Electromechanical Magnetization Switching, Eugene M. Chudnovsky, Reem Jaafar Feb 2015

Electromechanical Magnetization Switching, Eugene M. Chudnovsky, Reem Jaafar

Publications and Research

We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.