Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

PDF

Physics

University of Nebraska - Lincoln

Keyword
Publication

Articles 1 - 30 of 61

Full-Text Articles in Physical Sciences and Mathematics

Hexagonal Rare-Earth Manganites As Promising Photovoltaics And Light Polarizers, Xin Huang, Tula R. Paudel, Shuai Dong, Evgeny Y. Tsymbal Dec 2015

Hexagonal Rare-Earth Manganites As Promising Photovoltaics And Light Polarizers, Xin Huang, Tula R. Paudel, Shuai Dong, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Ferroelectric materials possess a spontaneous electric polarization and may be utilized in various technological applications ranging from nonvolatile memories to solar cells and light polarizers. Recently, hexagonal rareearth manganites, h-RMnO3 (R is a rare-earth ion), have attracted considerable interest due to their intricate multiferroic properties and improper ferroelectricity characterized by a sizable remnant polarization and high Curie temperature. Here we demonstrate that these compounds can serve as very efficient photovoltaic materials and, in addition, possess remarkable optical anisotropy properties. Using first-principles methods based on density functional theory and considering h-TbMnO3 as a representative …


Contact Resistance To Srruo3 And La0.67Sr0.33Mno3 Epitaxial Films, Mohammad Abuwasib, Hyungwoo Lee, Alexei Gruverman, Chang-Beom Eom, Uttam Singisetti Dec 2015

Contact Resistance To Srruo3 And La0.67Sr0.33Mno3 Epitaxial Films, Mohammad Abuwasib, Hyungwoo Lee, Alexei Gruverman, Chang-Beom Eom, Uttam Singisetti

Alexei Gruverman Publications

Contact resistance to the metallic oxide electrodes, SrRuO3 (SRO) and La0.67Sr0.33MnO3 (LSMO), is an important parameter that affects the ferroelectric tunnel junction (FTJ) device performance. We have systematically studied the contact resistance between metallic oxide electrodes (SRO, LSMO) and contact metal overlayers (Ti, Pt) after exposure to various processing environments. Specific contact resistivity (ρc) for Ti and Pt contact metals and the sheet resistance (Rsh) of the metallic oxides are measured after exposure to different reactive ion plasma process steps. Sheet resistance degradation was observed for both SRO and …


Effect Of Sm Content On Energy Product Of Rapidly Quenched And Oriented Smco5 Ribbons, Wenyong Zhang, Xingzhong Li, Shah R. Valloppilly Nov 2015

Effect Of Sm Content On Energy Product Of Rapidly Quenched And Oriented Smco5 Ribbons, Wenyong Zhang, Xingzhong Li, Shah R. Valloppilly

Nebraska Center for Materials and Nanoscience: Faculty Publications

The Sm-content dependence of phase composition, anisotropy, and other magnetic properties of Sm1+δCo5 (δ ≤ 0.12) ribbons melt spun at 10 m/s has been studied. The samples consist of hexagonal SmCo5 grains whose c axes are preferentially aligned along the long direction of the ribbon. The lattice parameter a and the cell volume (V) increase with increasing Sm content δ, whereas c decreases. Sm addition appears to improve the degree of the preferred orientation of the c-axis and to increase the mean grain size, which weakens the effective intergranular exchange …


Spin-Fluctuation Mechanism Of Anomalous Temperature Dependence Of Magnetocrystalline Anisotropy In Itinerant Magnets, I. A. Zhuravlev, V. P. Antropov, K. D. Belashchenko Nov 2015

Spin-Fluctuation Mechanism Of Anomalous Temperature Dependence Of Magnetocrystalline Anisotropy In Itinerant Magnets, I. A. Zhuravlev, V. P. Antropov, K. D. Belashchenko

Department of Physics and Astronomy: Faculty Publications

The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1−xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization due to these peculiar electronic mechanisms, which contrast starkly with those assumed in existing models.


Ionic Driven Embedment Of Hyaluronic Acid Coated Liposomes In Polyelectrolyte Multilayer Films For Local Therapeutic Delivery, Stephen L. Hayward, David M. Francis, Matthew J. Sis, Srivatsan Kidambi Oct 2015

Ionic Driven Embedment Of Hyaluronic Acid Coated Liposomes In Polyelectrolyte Multilayer Films For Local Therapeutic Delivery, Stephen L. Hayward, David M. Francis, Matthew J. Sis, Srivatsan Kidambi

Papers in Biomolecular Engineering

The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-LLysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top …


Reconfigurable Large-Area Magnetic Vortex Circulation Patterns, Robert Streubel, Florian Kronast, Ulrich K. Rößler, Oliver G. Schmidt, Denys Makarov Sep 2015

Reconfigurable Large-Area Magnetic Vortex Circulation Patterns, Robert Streubel, Florian Kronast, Ulrich K. Rößler, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

Magnetic vortices in nanodots own a switchable circulation sense. These nontrivial magnetization configurations can be arranged into extended and interacting patterns. We have experimentally created large arrays of magnetically reconfigurable vortex patterns in nonplanar honeycomb lattices using particle lithography. Optimizing height asymmetry of the vertices and applying an in-plane magnetic field provide means to switch between homocircular and staggered vortex patterns with a potentially high impact on magnonics and spintronics relying on chiral noncollinear spin textures. To this end, exchange coupling of extended vortex lattices with an out-of-plane magnetized layer allows one to realize artificial skyrmionic core textures with controllable …


Magnetization Dynamics Of Imprinted Non-Collinear Spin Textures, Robert Streubel, Peter Fischer, Martin Kopte, Oliver G. Schmidt, Denys Makarov Sep 2015

Magnetization Dynamics Of Imprinted Non-Collinear Spin Textures, Robert Streubel, Peter Fischer, Martin Kopte, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics …


Electron Vortices In Photoionization By Circularly Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, Anthony F. Starace Sep 2015

Electron Vortices In Photoionization By Circularly Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, Anthony F. Starace

Anthony F. Starace Publications

Single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses is shown to produce photoelectron momentum distributions in the polarization plane having helical vortex structures sensitive to the time delay between the pulses, their relative phase, and their handedness. Results are obtained by both ab initio numerical solution of the two-electron time-dependent Schrödinger equation and by a lowest-order perturbation theory analysis. The energy, bandwidth, and temporal duration of attosecond pulses are ideal for observing these vortex patterns.


Imaging Of Alignment And Structural Changes Of Carbon Disulfide Molecules Using Ultrafast Electron Diffraction, Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion Sep 2015

Imaging Of Alignment And Structural Changes Of Carbon Disulfide Molecules Using Ultrafast Electron Diffraction, Jie Yang, Joshua Beck, Cornelis J. Uiterwaal, Martin Centurion

Martin Centurion Publications

Imaging the structure of molecules in transient-excited states remains a challenge due to the extreme requirements for spatial and temporal resolution. Ultrafast electron diffraction from aligned molecules provides atomic resolution and allows for the retrieval of structural information without the need to rely on theoretical models. Here we use ultrafast electron diffraction from aligned molecules and femtosecond laser mass spectrometry to investigate the dynamics in carbon disulfide following the interaction with an intense femtosecond laser pulse. We observe that the degree of alignment reaches an upper limit at laser intensities below the ionization threshold, and find evidence of structural deformation, …


Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick Aug 2015

Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick

Department of Physics and Astronomy: Faculty Publications

In this paper we present an analysis of the spin behavior of electrons propagating through a laser field. We present an experimentally realizable scenario in which spin-dependent effects of the interaction between the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized nonrelativistic femtosecond electron pulses.


Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion Aug 2015

Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion

Martin Centurion Publications

Electron diffraction is a valuable tool to capture structural information from molecules in the gas phase. However, the information contained in the diffraction patterns is limited due to the random orientation of the molecules. Additional structural information can be retrieved if the molecules are aligned. Molecules can be impulsively aligned with femtosecond laser pulses, producing a transient alignment. The alignment persists only for a time on the order of a picosecond, so a pulsed electron gun is needed to record the diffraction patterns. In this manuscript, we describe the alignment process and show the changes in the diffraction pattern as …


Scaling Laws For High-Order-Harmonic Generation With Midinfrared Laser Pulses, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace Aug 2015

Scaling Laws For High-Order-Harmonic Generation With Midinfrared Laser Pulses, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace

Anthony F. Starace Publications

We derive an analytic expression for thewavelength scaling of the high-order-harmonic generation (HHG) yield induced by midinfrared driving laser fields. It is based on a quasiclassical description of the returning electron wave packet, which is shown to be largely independent of atomic properties. The accuracy of this analytic expression is confirmed by comparison with results of numerical solutions of the time-dependent Schr¨odinger equation for wavelengths in the range of 1.4 μm ≤ λ ≤ 4 μm. We verify the wavelength scaling of the HHG yield found numerically for midinfrared laser fields in a recent paper by Le et al. [


Favorable Target Positions For Intense Laser Acceleration Of Electrons In Hydrogen-Like, Highly-Charged Ions, Liang-Wen Pi, S. X. Hu, Anthony F. Starace Aug 2015

Favorable Target Positions For Intense Laser Acceleration Of Electrons In Hydrogen-Like, Highly-Charged Ions, Liang-Wen Pi, S. X. Hu, Anthony F. Starace

Anthony F. Starace Publications

Classical relativistic Monte Carlo simulations of petawatt laser acceleration of electrons bound initially in hydrogen-like, highly-charged ions show that both the angles and energies of the laser-accelerated electrons depend on the initial ion positions with respect to the laser focus. Electrons bound in ions located after the laser focus generally acquire higher (≈GeV) energies and are ejected at smaller angles with respect to the laser beam. Our simulations assume a tightly-focused linearly-polarized laser pulse with intensity approaching 1022W/cm2. Up to fifth order corrections to the paraxial approximation of the laser field in the focal region are …


Nanomechanics Of Flexoelectric Switching, J. Očenášek, Haidong Lu, C. W. Bark, Chang-Beom Eom, J. Alcalá, G. Catalan, Alexei Gruverman Jul 2015

Nanomechanics Of Flexoelectric Switching, J. Očenášek, Haidong Lu, C. W. Bark, Chang-Beom Eom, J. Alcalá, G. Catalan, Alexei Gruverman

Materials Research Science and Engineering Center: Faculty Publications

We examine the phenomenon of flexoelectric switching of polarization in ultrathin films of barium titanate induced by a tip of an atomic force microscope (AFM). The spatial distribution of the tip-induced flexoelectricity is computationally modeled both for perpendicular mechanical load (point measurements) and for sliding load (scanning measurements), and compared with experiments. We find that (i) perpendicular load does not lead to stable ferroelectric switching in contrast to the load applied in the sliding contact load regime, due to nontrivial differences between the strain distributions in both regimes: ferroelectric switching for the perpendicular load mode is impaired by a strain …


Retrieving Spin Textures On Curved Magnetic Thin Films With Full-Field Soft X-Ray Microscopies, Robert Streubel, Florian Kronast, Peter Fischer, Dula Parkinson, Oliver G. Schmidt, Denys Makarov Jul 2015

Retrieving Spin Textures On Curved Magnetic Thin Films With Full-Field Soft X-Ray Microscopies, Robert Streubel, Florian Kronast, Peter Fischer, Dula Parkinson, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue - magnetic X-ray tomography - is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and …


Photodetachment Of A Model Molecular System By An Elliptically Polarized Field, M. V. Frolov, N. L. Manakov, S. S. Marmo, Anthony F. Starace Jul 2015

Photodetachment Of A Model Molecular System By An Elliptically Polarized Field, M. V. Frolov, N. L. Manakov, S. S. Marmo, Anthony F. Starace

Anthony F. Starace Publications

The differential cross section for one-photon molecular detachment by an elliptically polarized field is analyzed for a one-electron molecular model comprised of an electron in the field of two (generally nonequivalent) attractive zero-range potentials (ZRPs) separated by the distance R. A phenomenological parametrization of the photodetachment cross section for a fixed-in-space molecular system in terms of two scalar dynamical parameters is presented and circular dichroism effects are discussed. Analytic results for the dynamical molecular parameters within the ZRP molecular model are used to analyze interference phenomena (including two-center interference) and dichroic effects in the detached electron angular distributions and …


Titanium Trisulfide Monolayer: Theoretical Prediction Of A New Direct-Gap Semiconductor With High And Anisotropic Carrier Mobility, Jun Dai, Xiao Cheng Zeng Jun 2015

Titanium Trisulfide Monolayer: Theoretical Prediction Of A New Direct-Gap Semiconductor With High And Anisotropic Carrier Mobility, Jun Dai, Xiao Cheng Zeng

Xiao Cheng Zeng Publications

A new two-dimensional (2D) layered material, namely, titanium trisulfide (TiS3) monolayer, is predicted to possess novel electronic properties. Ab initio calculations show that the perfect TiS3 monolayer is a direct-gap semiconductor with a bandgap of 1.02 eV, close to that of bulk silicon, and with high carrier mobility. More remarkably, the in-plane electron mobility of the 2D TiS3 is highly anisotropic, amounting to about 10,000 cm2 V−1 s−1 in the b direction, which is higher than that of the MoS2 monolayer, whereas the hole mobility is about two orders of magnitude lower. …


Rescattering Effects In Laser-Assisted Electron-Atom Bremsstrahlung, A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, Anthony F. Starace Mar 2015

Rescattering Effects In Laser-Assisted Electron-Atom Bremsstrahlung, A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov, Anthony F. Starace

Anthony F. Starace Publications

Rescattering effects in non-resonant spontaneous laser-assisted electron–atom bremsstrahlung (LABrS) are analyzed within the framework of time-dependent effective-range (TDER) theory. It is shown that high energy LABrS spectra exhibit rescattering plateau structures that are similar to those that are well-known in strong field laser-induced processes as well as those that have been predicted theoretically in laser-assisted collision processes. In the limit of a low-frequency laser field, an analytic description of LABrS is obtained from a rigorous quantum analysis of the exact TDER results for the LABrS amplitude. This amplitude is represented as a sum of factorized terms involving three factors, each …


Discrete Excitation Spectrum Of A Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan Mar 2015

Discrete Excitation Spectrum Of A Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

We report that upon excitation by a single pulse, a classical harmonic oscillator immersed in the classical electromagnetic zero-point radiation exhibits a discrete harmonic spectrum in agreement with that of its quantum counterpart. This result is interesting in view of the fact that the vacuum field is needed in the classical calculation to obtain the agreement.


Comment On “Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses”, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace Feb 2015

Comment On “Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses”, M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, Anthony F. Starace

Anthony F. Starace Publications

In conclusion, we have shown that when the same definition for the HHG yield is used [cf. Eq. (1)], the results of Ref. [1] give the same scaling law found earlier in Refs. [2–5] for wavelengths λ ≤ 2 μm. We note that this latter scaling law can be obtained analytically by using results of the model developed in Ref. [6] for the description of short-pulse HHG spectra. These analytic results as well as new numerical TDSE results for longer wavelengths, λ ≤ 4 μm, will be published elsewhere.


Enhancement Of Local Piezoresponse In Polymer Ferroelectrics Via Nanoscale Control Of Microstructure, Yoon-Young Choi, Pankaj Sharma, Charudatta Phatak, David J. Gosztola, Yunya Liu, Joonseok Lee, Byeongdu Lee, Jiangyu Li, Alexei Gruverman, Stephen Ducharme, Seungbum Hong Feb 2015

Enhancement Of Local Piezoresponse In Polymer Ferroelectrics Via Nanoscale Control Of Microstructure, Yoon-Young Choi, Pankaj Sharma, Charudatta Phatak, David J. Gosztola, Yunya Liu, Joonseok Lee, Byeongdu Lee, Jiangyu Li, Alexei Gruverman, Stephen Ducharme, Seungbum Hong

Stephen Ducharme Publications

Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of β-phase extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believe …


Electric Control Of Spin Injection Into A Ferroelectric Semiconductor, Xiaohui Liu, John D. Burton, M. Ye. Zhuravlev, Evgeny Y. Tsymbal Jan 2015

Electric Control Of Spin Injection Into A Ferroelectric Semiconductor, Xiaohui Liu, John D. Burton, M. Ye. Zhuravlev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Electric-field control of spin-dependent properties has become one of the most attractive phenomena in modern materials research due to the promise of new device functionalities. One of the paradigms in this approach is to electrically toggle the spin polarization of carriers injected into a semiconductor using ferroelectric polarization as a control parameter. Using first-principles density-functional calculations, we explore the effect of ferroelectric polarization of electron-doped BaTiO3 (n-BaTiO3) on the spin-polarized transmission across the SrRuO3/n-BaTiO3(001) interface. Our study reveals that, in this system, the interface transmission is negatively spin polarized …


Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5Nd0.5Nio3, Le Zhang, Chen, H. J. Gardner, Mark A. Koten, Jeffrey E. Shield, Xia Hong Jan 2015

Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5Nd0.5Nio3, Le Zhang, Chen, H. J. Gardner, Mark A. Koten, Jeffrey E. Shield, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in high quality PbZr0.3Ti0.7O3 (PZT)/3.8–4.3 nm Sm0.5Nd0.5NiO3 (SNNO) heterostructures grown on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. For SNNO on LAO, which exhibits a first-order metal-insulator transition (MIT), switching the polarization of PZT induces a 10K shift in the transition temperature TMI, with a maximum resistance change between the on and off states of ΔR = Ron ~75%. In sharp contrast, only up to 5% resistance change has been …


The Influence Of Charge And Magnetic Order On Polaron And Acoustic Phonon Dynamics In Lufe2O4, J. Lee, S. A. Trugman, C. L. Zhang, D. Talbayev, Xiaoshan Xu, S.-W. Cheong, D. A. Yarotski, A. J. Taylor, R. P. Prasankumar Jan 2015

The Influence Of Charge And Magnetic Order On Polaron And Acoustic Phonon Dynamics In Lufe2O4, J. Lee, S. A. Trugman, C. L. Zhang, D. Talbayev, Xiaoshan Xu, S.-W. Cheong, D. A. Yarotski, A. J. Taylor, R. P. Prasankumar

Nebraska Center for Materials and Nanoscience: Faculty Publications

Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polaron dynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe2O4. We experimentally observed the influence of magnetic order on polaron dynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. This provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.


Magnetic Force Microscopy Study Of Zr2co11-Based Nanocrystalline Materials: Effect Of Mo Addition, Lanping Yue, Yunlong Jin, Wenyong Zhang, David J. Sellmyer Jan 2015

Magnetic Force Microscopy Study Of Zr2co11-Based Nanocrystalline Materials: Effect Of Mo Addition, Lanping Yue, Yunlong Jin, Wenyong Zhang, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. The effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84−xMox (𝑥 = 0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. The coercivity of the samples increases with the increase in Mo content (𝑥 ≤ 1.5). The maximum energy product (𝐵𝐻)max increases with increasing 𝑥 from 0.5 MGOe for 𝑥 …


Magnetism Of Hexagonal Mn1.5X0.5Sn (X = Cr, Mn, Fe, Co) Nanomaterials, R Fuglsby, Parashu Kharel, Wenyong Zhang, Shah R. Valloppilly, Yung Huh, David J. Sellmyer Jan 2015

Magnetism Of Hexagonal Mn1.5X0.5Sn (X = Cr, Mn, Fe, Co) Nanomaterials, R Fuglsby, Parashu Kharel, Wenyong Zhang, Shah R. Valloppilly, Yung Huh, David J. Sellmyer

David Sellmyer Publications

Mn1.5X0.5Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni2In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn1.5X0.5Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm3 for Mn1.5Fe0.5Sn, but their Curie temperatures are less than 300K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100K are on the order of 1 Merg/cm3. The vacuum annealing of the ribbons at 550 C significantly improved their magnetic properties with the Curie temperature increasing …


Synthesis And Magnetism Of Single-Phase Mn-Ga Films, Wenyong Zhang, Parashu Kharel, Shah R. Valloppilly, Ralph A. Skomski, David J. Sellmyer Jan 2015

Synthesis And Magnetism Of Single-Phase Mn-Ga Films, Wenyong Zhang, Parashu Kharel, Shah R. Valloppilly, Ralph A. Skomski, David J. Sellmyer

David Sellmyer Publications

Single-phase noncubic Mn-Ga films with a thickness of about 200 nm were fabricated by an in situ annealing of [Mn(x)/Ga(y)/Mn(x)]5 multilayers deposited by e-beam evaporation. Mn-Ga alloys prepared in three different compositions Mn2Ga5 and Mn2Ga were found to crystallize in the tetragonal tP14 and tP2 structures, respectively. Mn3Ga crystallizes in the hexagonal hp8 or tetragonal tI8 structures. All three alloys show substantial magnetocrystalline anisotropy between 7 and 10 Mergs/cm3. The samples show hard magnetic properties including coercivities of Mn2Ga5 and Mn2Ga about 12.0 kOe and of Mn3Ga about 13.4 kOe. The saturation magnetization and Curie temperature of Mn2Ga5, Mn2Ga, and …


Enhancement Of Curie Temperature In Mn2rusn By Co Substitution, A Nelson, Parashu Kharel, Yung Huh, R Fuglsby, J Guenther, Wenyong Zhang, B Staten, Pavel V. Lukashev, David J. Sellmyer Jan 2015

Enhancement Of Curie Temperature In Mn2rusn By Co Substitution, A Nelson, Parashu Kharel, Yung Huh, R Fuglsby, J Guenther, Wenyong Zhang, B Staten, Pavel V. Lukashev, David J. Sellmyer

David Sellmyer Publications

The Co-substituted Mn2RuSn nanomaterials, namely, Mn2Ru0.5Co0.5Sn and Mn2Ru0.35Co0.65Sn have been synthesized and investigated. The presence of Co in the Mn2RuSn (a¼6.21A ° ) decreased the lattice parameter, where a¼6.14A ° and 6.12A ° for the as prepared Mn2Ru0.5Co0.5Sn and Mn2Ru0.35Co0.65Sn, respectively. The samples show a ferrimagnetic spin order with relatively small coercivities, similar to those of soft magnetic materials. There is a substantial increase in the Curie temperature (Tc¼448K for Mn2Ru0.5Co0.5Sn and 506K for Mn2Ru0.35Co0.65Sn) of Mn2RuSn (Tc¼272.1 K) due to Co substitution, which is a result of strengthening of the positive exchange interaction in this material. These materials are …


Novel Structures And Physics Of Nanomagnets (Invited), David J. Sellmyer, Balamurugan Balamurugan, Bhaskar Das, P Murherjee, Ralph A. Skomski, George C. Hadjipanayis Jan 2015

Novel Structures And Physics Of Nanomagnets (Invited), David J. Sellmyer, Balamurugan Balamurugan, Bhaskar Das, P Murherjee, Ralph A. Skomski, George C. Hadjipanayis

David Sellmyer Publications

Nanoscale magnets with characteristic dimensions in the range of 1–100 nm are important in several areas of nanoscience and technology. First, this length scale spans the typical important dimensions of exchange lengths and domain-wall widths, which means that significant control of magnetic properties can be obtained by varying grain or particle dimensions. Second, the nonequilibrium synthetic processes used for clusters, particles, and films, often lead to new real-space crystal structures with completely novel spin structures and magnetic properties. Third, a basic-science challenge in this class of matter involves the spin-polarized quantum mechanics of many-electron systems containing 10–10 000 atoms. Finally, …


Magnetism Of Ta Dichalcogenide Monolayers Tuned By Strain And Hydrogenation, Priyanka Manchanda, Vinit Sharma, Hongbin Yu, David J. Sellmyer, Ralph A. Skomski Jan 2015

Magnetism Of Ta Dichalcogenide Monolayers Tuned By Strain And Hydrogenation, Priyanka Manchanda, Vinit Sharma, Hongbin Yu, David J. Sellmyer, Ralph A. Skomski

David Sellmyer Publications

The effects of strain and hydrogenation on the electronic, magnetic, and optical properties of monolayers of Ta based dichalcogenides (TaX2; X=S, Se, and Te) are investigated using densityfunctional theory. We predict a complex scenario of strain-dependent magnetic phase transitions involving paramagnetic, ferromagnetic, and modulated antiferromagnetic states. Covering one of the two chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic TaX2 monolayers to a semiconductor, and the optical behavior strongly depends on strain and hydrogenation. Our research opens pathways towards the manipulation of magnetic as well as optical properties for future spintronics and optoelectronics applications