Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Development Of A Scalable Synthesis Of Hp-Β-Cd Pluronic Polyrotaxanes, Joseph L. Skulsky, Elizabeth A. Slepko, Bradley P. Loren, David H. Thompson Aug 2015

Development Of A Scalable Synthesis Of Hp-Β-Cd Pluronic Polyrotaxanes, Joseph L. Skulsky, Elizabeth A. Slepko, Bradley P. Loren, David H. Thompson

The Summer Undergraduate Research Fellowship (SURF) Symposium

Polyrotaxanes are polymers that have macrocycles threaded onto them, analogous to beads threaded onto a string. These materials are used for a variety of different biomedical applications.1-3 The Thompson group has been developing 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) polyrotaxanes as therapeutics for the treatment of Niemann-Pick Type C (NPC) disease. NPC is a debilitating genetic disorder where cholesterol accumulates in the lysosomes of cells.4 Developing a scalable process is crucial for the advancement of these materials as NPC therapeutics. The goal of this project is to optimize the only protocol for the synthesis of HP-β-CD/Pluronic polyrotaxanes in order to develop a …


Bio-Inspired Composite Hydrogels For Osteochondral Regenerative Engineering, Grant N. Gellert, Liangju Kuang, Chunhui Jiang, Nur P. Damayanti, Joseph Irudayaraj, Meng Deng Aug 2015

Bio-Inspired Composite Hydrogels For Osteochondral Regenerative Engineering, Grant N. Gellert, Liangju Kuang, Chunhui Jiang, Nur P. Damayanti, Joseph Irudayaraj, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Treatment of osteochondral defects encompassing injury or degeneration to both the articular cartilage as well as the underlying subchondral bone presents a significant medical challenge. Current treatment options including autografts and allografts suffer from limited availability and risk of immunogenicity, respectively. The long term goal of this work is to develop an integrated scaffold system for treatment of osteochondral defects via in situ regeneration of bone, cartilage and the bone-cartilage interface. Hydrogels composed of polymer networks swollen in water provide an attractive biomaterial platform for regeneration of cartilage. In the present study, we have developed a novel composite hydrogel consisting …