Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Nanoparticles

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 45

Full-Text Articles in Physical Sciences and Mathematics

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Engineered Nanoparticles For Detection And Treatment Of Bacteria And Biofilms, Xiaoning Li Nov 2014

Engineered Nanoparticles For Detection And Treatment Of Bacteria And Biofilms, Xiaoning Li

Doctoral Dissertations

Rapid and sensitive detection and identification of bacteria woud control and prevent bacterial infection and disease, enhancing the likelihood of early diagnosis and treatment. Especially developing effective biosensor for identification of bacteria species involved in formation of biofilms, which cause chronic and persistent diseases, would promote diagnostic and therapeutic efficiency. Conventional detection methods are limited by sensitivity and required time. First part of my research has been focused on developing a rapid, simple, and sensitive biosensor aiming at portable device application for detection of bacteria in water samples. This sensor is able to detect bacteria at low concentration and generate …


Modification Of Gold Nanoparticles For Sers Application In Emulsion And Lipid Systems, Michael J. Driver Nov 2014

Modification Of Gold Nanoparticles For Sers Application In Emulsion And Lipid Systems, Michael J. Driver

Masters Theses

Gold nanoparticles produced using the Turkevich method were able to have their hydrophobicity modified using octanethiol in a novel method for SERS application. Both amphiliphic GNPs and hydrophobic GNPs were produced and differentiated by Raman signals. The amphiliphic GNPs were able to enhance the SERS signals of the protein emulsifier in the emulsion in situ and the hydrophobic GNPs were able to enhance the SERS signals from canola oil. Further purification of the hydrophobic GNPs proved to have higher enhancement and sensitivity, but still poor consistency which is typical of SERS. Monitoring lipid oxidation using Raman and SERS using alternative …


Magnetic Properties Of (Γ-Fe₂O₃)₈₀Ag₂₀ Nanocomposites Prepared In Reverse Micelles, Joan A. Wiemann, Jianbiao Dai, Jinke Tang, Gary J. Long, Leonard Spinu Oct 2014

Magnetic Properties Of (Γ-Fe₂O₃)₈₀Ag₂₀ Nanocomposites Prepared In Reverse Micelles, Joan A. Wiemann, Jianbiao Dai, Jinke Tang, Gary J. Long, Leonard Spinu

Jinke Tang

The magnetic properties of nanoparticles of gamma-Fe2O3 prepared by reverse micelles have been studied by dc magnetization, transverse ac susceptibility, and Mössbauer spectroscopy. The nanoparticles of gamma-Fe2O3 in the nanocomposite (gamma-Fe2O3)80Ag20 exhibit superparamagnetic behavior. The blocking temperatures determined by the three methods indicate the superparamagnetic nature of (gamma-Fe2O3)80Ag20 above 70-80 K and show correlation with measuring time. The average particle diameter obtained by transmission electron microscopy of the gamma-Fe2O3 particles is ~10 nm and that of the Ag particles is ~20 nm. The average particle size determined from the magnetic analyses for the gamma-Fe2O3 particles is ~12 nm. Mössbauer spectra …


Ultra-Small Fluorescent Inorganic Nanoparticles For Bioimaging, Zhen Li, Qiao Sun, Yian Zhu, Bien Tan, Zhi Ping Xu, S X. Dou Oct 2014

Ultra-Small Fluorescent Inorganic Nanoparticles For Bioimaging, Zhen Li, Qiao Sun, Yian Zhu, Bien Tan, Zhi Ping Xu, S X. Dou

Shi Xue Dou

The novel optical, electrical, and magnetic properties of ultra-small inorganic nanoparticles make them very attractive in diverse applications in the fields of health, clean and renewable energy, and environmental sustainability. This article comprehensively summarizes state-of-the-art fluorescence imaging using ultra-small nanoparticles as probes, including quantum dots, metal nanoclusters, carbon nanomaterials, up-conversion, and silicon nanomaterials.


Platinum Dendritic Nanoparticles With Magnetic Behavior, Wenxian Li, Ziqi Sun, Dongliang Tian, Ivan P. Nevirkovets, S X. Dou Oct 2014

Platinum Dendritic Nanoparticles With Magnetic Behavior, Wenxian Li, Ziqi Sun, Dongliang Tian, Ivan P. Nevirkovets, S X. Dou

Shi Xue Dou

Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a …


Photochromic Molecular Materials For The Controlled Organization Of Nanoparticles, Kristen Elise Snell Oct 2014

Photochromic Molecular Materials For The Controlled Organization Of Nanoparticles, Kristen Elise Snell

Electronic Thesis and Dissertation Repository

The displacement of polystyrene nanoparticles promoted by bulk azo mass transfer using interferential light illumination will be discussed. For this a variety of different push pull small azo molecules were synthesis and characterized, changing the polarity, hydrophobicity and bulky groups around the azo moiety. These small dyes appear to orientate quicker than similarly report azo polymers, of entanglement of the azobenzene group in the polymeric backbone. These dyes were used to form surface relief grating on the thin films due to the bulk mass transfer. This mass transfer was exploited to align polystyrene nanoparticles in the crests and troughs of …


Mass Spectrometric Characterization And Imaging Of Nanoparticles In Biological Samples, Bo Yan Aug 2014

Mass Spectrometric Characterization And Imaging Of Nanoparticles In Biological Samples, Bo Yan

Doctoral Dissertations

Nanoparticles (NPs) are being investigated widely for use in biomedical applications such as imaging, drug delivery, and cancer therapy due to their small size and readily tunable properties. The ability to accurately characterize NPs and monitor their spatial distributions is highly desirable for effective use of NPs and evaluation of their potential adverse environmental, health, and safety effects. In this dissertation, a simple, fast, and sensitive method based on laser desorption/ionization mass spectrometry (LDI-MS) to characterize and track NPs in biological systems has been developed. This method is especially well suited for characterizing core-shell structured NPs, such as quantum dots …


Synthesis And Characterization Of Polymer Nanomaterials Using Controlled Radical Polymerization, Lei Wang Aug 2014

Synthesis And Characterization Of Polymer Nanomaterials Using Controlled Radical Polymerization, Lei Wang

Theses and Dissertations

This research focuses on creating and investigating polymer/organic bound interfaces on nanoparticles with advanced architectures to tailor the properties of polymer nanocomposites for various applications. Reversible addition-fragmentation chain transfer (RAFT) polymerization and a toolbox of surface functionalization from the simple to the advanced were developed to prepare the polymer nanomaterials.

In the first part (Chapter 2), a variety of RAFT agents (xanthate, dithiocarbamate and trithiocarbonate) were used to mediate the polymerizations of several classes of free radical polymerizable monomers. These monomers consist of styrene, methyl acrylate, methyl methacrylate, vinyl acetate and isoprene, which have different activities and require different classes …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


Green Synthesis And Evaluation Of Catalytic Activity Of Sugar Capped Gold Nanoparticles, Yogesh A. Kherde Aug 2014

Green Synthesis And Evaluation Of Catalytic Activity Of Sugar Capped Gold Nanoparticles, Yogesh A. Kherde

Masters Theses & Specialist Projects

Owing to the importance of gold nanoparticles in catalysis, designing of them has become a major focus of the researchers. Most of the current methods available for the synthesis of gold nanoaprticles (GNPs) suffer from the challenges of polydispersity, stability and use of toxic and harmful chemicals. To overcome these limitations of conventional methods, in our present study, we made an attempt to design a method for the green synthesis of monodispersed and stable gold nanoparticles by sugars which act as reducing and stabilizing agent. Characterization of synthesized nanoparticles was done by using various analytical techniques such as transmission electron …


Determination Of Thiamine In Solution By Uv-Visible Spectrophotometry: The Effect Of Interactions With Gold Nanoparticles, Michael Vincent Zielinski Jul 2014

Determination Of Thiamine In Solution By Uv-Visible Spectrophotometry: The Effect Of Interactions With Gold Nanoparticles, Michael Vincent Zielinski

Master's Theses and Doctoral Dissertations

The method presented here provides the foundation for a simple and selective qualitative determination of thiamine in solution. Gold nanoparticles in the presence of thiamine results in the formation of a secondary peak in the absorbance spectrum of the mixture. This peak can be used as an indicator of thiamine, which is useful for the qualitative analysis of solutions, and may provide an alternative to other methods for evaluating thiamine in blood and other biological systems. This method uses gold nanoparticles of a size around 20 to 30 nm and involves their selective interaction with thiamine, compared to selected amino …


Fabrication Of Multifunctional Ferromagnetic Au₃Pd-Cose Nanoparticles, Wipula P. Liyanage, Sukhada Mishra, Kai Song, Manashi Nath Jun 2014

Fabrication Of Multifunctional Ferromagnetic Au₃Pd-Cose Nanoparticles, Wipula P. Liyanage, Sukhada Mishra, Kai Song, Manashi Nath

Chemistry Faculty Research & Creative Works

We have synthesized multifunctional anisotropic Au3Pd-CoSe nanoparticles on Si substrate through a catalyst aided chemical vapour deposition technique. the technique utilized volatile cobalt acetylacetonate and elemental selenium as precursors while sputter coated Au-Pd (3:2) film acted as a catalyst. the typical growth conditions led to clear segregation of the hetero-compositions (i.e. Au3Pd and CoSe) in the product nanostructures thereby preserving the functionality of both the phases. the degree of crystallinity of the individual phases in the composite nanostructure was fairly high. the bifunctional nanoparticles show soft ferromagnetic behaviour at room temperature and optical activity making them …


Cytotoxicity Of Zno Nanoparticles Can Be Tailored By Modifying Their Surface Structure: A Green Chemistry Approach For Safer Nanomaterials, Alex Punnoose, Kelsey Dodge, John W. Rasmussen, Jordan Chess, Denise Wingett, Catherine Anders May 2014

Cytotoxicity Of Zno Nanoparticles Can Be Tailored By Modifying Their Surface Structure: A Green Chemistry Approach For Safer Nanomaterials, Alex Punnoose, Kelsey Dodge, John W. Rasmussen, Jordan Chess, Denise Wingett, Catherine Anders

Physics Faculty Publications and Presentations

ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor …


Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam May 2014

Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam

Physics Faculty Publications and Presentations

Surface effects on the magnetization of Zn-doped SnO2 are investigated using first principles method. Magnetic behavior of Zn-doped bulk and highest and lowest energy surfaces—(001) and (110), respectively, are investigated in presence and absence of other intrinsic defects. The Zn-doped (110) and (001) surfaces of SnO2 show appreciable increase in the magnetic moment (MM) compared to Zn-doped bulk SnO2. Formation energies of Zn defects on both the surfaces are found to be lower than those in bulk SnO2. Zn doping favors the formation of oxygen vacancies. The density of states analysis on the Zn-doped …


A Facile Route To Tailoring Peptide-Stabilized Gold Nanoparticles Using Glutathione As A Synthon, Rosina Ho Wu, Tan P. Nguyen, Grant W. Marquart, Thomas J. Miesen, Theresa Mau, Marilyn R. Mackiewicz May 2014

A Facile Route To Tailoring Peptide-Stabilized Gold Nanoparticles Using Glutathione As A Synthon, Rosina Ho Wu, Tan P. Nguyen, Grant W. Marquart, Thomas J. Miesen, Theresa Mau, Marilyn R. Mackiewicz

Chemistry Faculty Publications and Presentations

The preparation of gold nanoparticles (AuNPs) of high purity and stability remains a major challenge for biological applications. This paper reports a simple synthetic strategy to prepare water-soluble peptide-stabilized AuNPs. Reduced glutathione, a natural tripeptide, was used as a synthon for the growth of two peptide chains directly on the AuNP surface. Both nonpolar (tryptophan and methionine) and polar basic (histidine and dansylated arginine) amino acids were conjugated to the GSH-capped AuNPs. Ultracentrifugation concentrators with polyethersulfone (PES) membranes were used to purify precursor materials in each stage of the multi-step synthesis to minimize side reactions. Thin layer chromatography, transmission electron …


The Impact Of Surface Ligands And Synthesis Method On The Toxicity Of Glutathione-Coated Gold Nanoparticles, Bryan Harper, Federico Sinche, Meenambika Gowrishankar, Grant Marquart, Marilyn R. Mackiewicz, Stacey L. Harper May 2014

The Impact Of Surface Ligands And Synthesis Method On The Toxicity Of Glutathione-Coated Gold Nanoparticles, Bryan Harper, Federico Sinche, Meenambika Gowrishankar, Grant Marquart, Marilyn R. Mackiewicz, Stacey L. Harper

Chemistry Faculty Publications and Presentations

Gold nanoparticles (AuNPs) are increasingly used in biomedical applications, hence understanding the processes that affect their biocompatibility and stability are of significant interest. In this study, we assessed the stability of peptide-capped AuNPs and used the embryonic zebrafish (Danio rerio) as a vertebrate system to investigate the impact of synthesis method and purity on their biocompatibility. Using glutathione (GSH) as a stabilizer, Au-GSH nanoparticles with identical core sizes were terminally modified with Tryptophan (Trp), Histidine (His) or Methionine (Met) amino acids and purified by either dialysis or ultracentrifugation. Au-GSH-(Trp)2 purified by dialysis elicited significant morbidity and mortality at …


Synthesis And Characterization Of Cobalt Carbide Based Nanomaterials, Zachary Huba Apr 2014

Synthesis And Characterization Of Cobalt Carbide Based Nanomaterials, Zachary Huba

Theses and Dissertations

Permanent magnets are used heavily for multiple applications in industry and current electronic technologies. However, the current permanent landscape is muddled by high cost of materials and insufficient magnetic or thermal properties. The primary focus of this dissertation work is the synthesis and optimization of a new permanent magnetic material, in the form of cobalt carbide nanomaterials. The optimization revolved around controlling the crystal phase and particle shape of synthesized cobalt carbide particles; these parameters have significant impact on the observed magnetic properties of magnetic nanoparticles. Co3C was identified to be the preferred crystal phase, leading to better …


Enhancing Superconducting Properties Of Mgb2 Pellets By Addition Of Amorphous Magnetic Ni-Co-B Nanoparticles, Mislav Mustapic, Josip Horvat, Md Shahriar Hossain, Zeljko Skoko, S X. Dou Apr 2014

Enhancing Superconducting Properties Of Mgb2 Pellets By Addition Of Amorphous Magnetic Ni-Co-B Nanoparticles, Mislav Mustapic, Josip Horvat, Md Shahriar Hossain, Zeljko Skoko, S X. Dou

Josip Horvat

Amorphous magnetic Ni-Co-B nanoparticles with an average size of 5 nm were added to precursor powders of MgB2 superconductor. The preparation procedure for MgB2 pellets was optimized for obtaining the best critical current density (Jc) at elevated magnetic fields. Addition of Ni-Co-B decreases the Jc for heat treatment of precursor powders at 650 ° C. Heat treatments at 770 ° C and higher improve Jc at 20 and 5 K. This improvement occurs at both temperatures through the increase of the effective connectivity between MgB2 crystals. Vortex pinning was enhanced at 5 K, but not at 20 K. Ni-Co-B nanoparticles …


Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam Mar 2014

Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam

Pushpa Raghani

Surface effects on the magnetization of Zn-doped SnO2 are investigated using first principles method. Magnetic behavior of Zn-doped bulk and highest and lowest energy surfaces—(001) and (110), respectively, are investigated in presence and absence of other intrinsic defects. The Zn-doped (110) and (001) surfaces of SnO2 show appreciable increase in the magnetic moment (MM) compared to Zn-doped bulk SnO2. Formation energies of Zn defects on both the surfaces are found to be lower than those in bulk SnO2. Zn doping favors the formation of oxygen vacancies. The density of states analysis on the Zn-doped (110) surface reveals that the spin …


Spin And Orbital Moments And Magnetic Order In Fe3o4 Nanoparticle Assemblies, Yanping Cai Mar 2014

Spin And Orbital Moments And Magnetic Order In Fe3o4 Nanoparticle Assemblies, Yanping Cai

Theses and Dissertations

Fe3O4 magnetic nanoparticles of 5 to 11 nm in size were prepared by organic methods. Particle size was analyzed by both X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) techniques. Zero Field Cooling (ZFC) / Field Cooling (FC) and magnetization loop measurements were recorded by VSM, and they confirmed superparamagnetic behavior in the sample. The blocking temperature is found to be in the range of 30 K ~ 170 K. It has a dependence on the particle size. ZFC / FC curves also indicate the presence of magnetic coupling between particles. X-ray Magnetic Circular Dichroism (XMCD) measurements of these nanoparticles …


Enhancing Superconducting Properties Of Mgb2 Pellets By Addition Of Amorphous Magnetic Ni-Co-B Nanoparticles, Mislav Mustapic, Josip Horvat, Md Shahriar Hossain, Zeljko Skoko, S X. Dou Mar 2014

Enhancing Superconducting Properties Of Mgb2 Pellets By Addition Of Amorphous Magnetic Ni-Co-B Nanoparticles, Mislav Mustapic, Josip Horvat, Md Shahriar Hossain, Zeljko Skoko, S X. Dou

Shi Xue Dou

Amorphous magnetic Ni-Co-B nanoparticles with an average size of 5 nm were added to precursor powders of MgB2 superconductor. The preparation procedure for MgB2 pellets was optimized for obtaining the best critical current density (Jc) at elevated magnetic fields. Addition of Ni-Co-B decreases the Jc for heat treatment of precursor powders at 650 ° C. Heat treatments at 770 ° C and higher improve Jc at 20 and 5 K. This improvement occurs at both temperatures through the increase of the effective connectivity between MgB2 crystals. Vortex pinning was enhanced at 5 K, but not at 20 K. Ni-Co-B nanoparticles …


Pulse Electrodeposition Of Pd-Ni Alloy Nanoparticles For Electrocatalytic Oxidation Of Formic Acid, Fang-Zu Yang, Jun-Pei Yue, Zhong-Qun Tian, Shao-Min Zhou Feb 2014

Pulse Electrodeposition Of Pd-Ni Alloy Nanoparticles For Electrocatalytic Oxidation Of Formic Acid, Fang-Zu Yang, Jun-Pei Yue, Zhong-Qun Tian, Shao-Min Zhou

Journal of Electrochemistry

The Pd-Ni alloy nanoparticles with nickel atomic contents of 12.0%, 16.4% and 22.6% were successfully electrodeposited from a Pd-Ni alloy electrolyte by square wave pulse plating. The alloy nanoparticles were in the spherical shape with a diameter of 50 ~ 80 nm. As the growth potential of the alloy was negatively shifted, the nickel content of the alloy was increased, and the size of the nanoparticles was almost the same, whereas the number, the degree of crosslinking and the real active area of the nanoparticles were increased. As the nickel content of the alloy nanoparticles increased, the peak current for …


Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen Jan 2014

Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen

Electronic Thesis and Dissertation Repository

Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the surface of nanoparticles to have enhanced biocompatibility and functionality for the in vitro and in vivo applications, especially in delivering locally and recognizing biomolecules. Herein, the goal of this research work is to develop advanced NPs with well-tailored surface functionalities and/or bio-functionality for the applications in cell tracking and analytes detection.

In the first project, quantum dots incorporating with gelatin nanoparticles (QDs-GNPs) have been developed for bioimaging applications. Two different approaches have been …


Fracture And Failure Of Nanoparticle Monolayers And Multilayers, Yifan Wang, Pongsakorn Kanjanaboos, Edward Barry Edward Barry, Sean P. Mcbride, Xiao-Min Lin, Heinrich M. Jaeger Jan 2014

Fracture And Failure Of Nanoparticle Monolayers And Multilayers, Yifan Wang, Pongsakorn Kanjanaboos, Edward Barry Edward Barry, Sean P. Mcbride, Xiao-Min Lin, Heinrich M. Jaeger

Physics Faculty Research

We present an experimental investigation of fracture in self-assembled gold nanoparticle mono- and multilayers attached to elastomer substrates and subjected to tensile stress. Imaging the fracture patterns down to the scale of single particles provides detailed information about the crack width distribution and allows us to compare the scaling of the average crack spacing as a function of strain with predictions by shear-lag models. With increasing particle size, the fracture strength is found to increase while it decreases as the film thickness is built up layer by layer, indicating stress inhomogeneity in the thickness dimension.


Quantitative Scanning Transmission Electron Microscopy Of Thick Samples And Of Gold And Silver Nanoparticles On Polymeric Surfaces, Aniruddha Dutta Jan 2014

Quantitative Scanning Transmission Electron Microscopy Of Thick Samples And Of Gold And Silver Nanoparticles On Polymeric Surfaces, Aniruddha Dutta

Electronic Theses and Dissertations

Transmission Electron Microscopy (TEM) is a reliable tool for chemical and structural studies of nanostructured systems. The shape, size and volumes of nanoparticles on surfaces play an important role in surface chemistry. As nanostructured surfaces become increasingly important for catalysis, protective coatings, optical properties, detection of specific molecules, and many other applications, different techniques of TEM can be used to characterize the properties of nanoparticles on surfaces to provide a path for predictability and control of these systems. This dissertation aims to provide fundamental understanding of the surface chemistry of Electroless Metallization onto Polymeric Surfaces (EMPS) through characterization with TEM. …


Electrocatalytic Processing Of Renewable Biomass-Derived Compounds For Production Of Chemicals, Fuels And Electricity, Le Xin Jan 2014

Electrocatalytic Processing Of Renewable Biomass-Derived Compounds For Production Of Chemicals, Fuels And Electricity, Le Xin

Dissertations, Master's Theses and Master's Reports - Open

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with …


Rat Hippocampal Responses Up To 90 Days After A Single Nanoceria Dose Extends A Hierarchical Oxidative Stress Model For Nanoparticle Toxicity, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Jan 2014

Rat Hippocampal Responses Up To 90 Days After A Single Nanoceria Dose Extends A Hierarchical Oxidative Stress Model For Nanoparticle Toxicity, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

Ceria engineered nanomaterials (ENMs) have very promising commercial and therapeutic applications. Few reports address the effects of nanoceria in intact mammals, let alone long term exposure. This knowledge is essential to understand potential therapeutic applications of nanoceria in relation to its hazard assessment. The current study elucidates oxidative stress responses in the rat hippocampus 1 and 20 h, and 1, 7, 30 and 90 days following a single systemic infusion of 30 nm nanoceria. The results are incorporated into a previously described hierarchical oxidative stress (HOS) model. During the 1-20 h period, increases of the GSSG: GSH ratio and cytoprotective …


Inverted Linear Halbach Array For Separation Of Magnetic Nanoparticles, Chetan Poudel Jan 2014

Inverted Linear Halbach Array For Separation Of Magnetic Nanoparticles, Chetan Poudel

Honors Papers

Magnetic nanoparticles have unique physical and chemical properties, making them appealing candidates for biomedical applications. These applications depend critically on size and magnetic uniformity of the nanoparticles. Unfortunately, very few purification methods exist to sort nanoparticles based on their magnetic properties. Here, we describe an unusual approach to this problem through our construction of a device containing a linear array of permanent magnets in a Halbach configuration, where successive magnet blocks have their magnetization orientation at right angles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient where sorting of nanoparticles based on …


Size-Induced Chemical And Magnetic Ordering In Individual Fe–Au Nanoparticles, Pinaki Mukherjee, Priyanka Manchanda, Pankaj Kumar, Lin Zhou, Matthew J. Kramer, Arti Kashyap, Ralph Skomski, David J. Sellmyer, Jeffrey E. Shield Jan 2014

Size-Induced Chemical And Magnetic Ordering In Individual Fe–Au Nanoparticles, Pinaki Mukherjee, Priyanka Manchanda, Pankaj Kumar, Lin Zhou, Matthew J. Kramer, Arti Kashyap, Ralph Skomski, David J. Sellmyer, Jeffrey E. Shield

David Sellmyer Publications

Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe–Au sub-10 nm nanoparticles, suggesting that they are equilib-rium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 com-pounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three com-pounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a …