Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Carbon

Australian Institute for Innovative Materials - Papers

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

A Triblock-Copolymer-Templating Route To Carbon Spheres@Sba-15 Large Mesopore Core-Shell And Hollow Structures, Jianping Yang, Xianghong Qian, Minjun Chen, Jianwei Fan, Hua-Kun Liu, Weixian Zhang Jan 2014

A Triblock-Copolymer-Templating Route To Carbon Spheres@Sba-15 Large Mesopore Core-Shell And Hollow Structures, Jianping Yang, Xianghong Qian, Minjun Chen, Jianwei Fan, Hua-Kun Liu, Weixian Zhang

Australian Institute for Innovative Materials - Papers

The fabrication of mesoporous core-shell and hollow spheres with ordered mesostructures and tunable large pore sizes is highly desirable for fundamental research and practical applications. A direct triblock-copolymer-templating coating approach has been provided for the synthesis of carbon sphere@mesoporous silica core-shell (CS@SBA-15) and hollow structures in an acidic medium at room temperature. These CS@SBA-15 core-shell structures possess large mesopores (6.3-8.4 nm), high surface areas (318.1-438.4 m2 g-1) and large pore volumes (0.31-0.36 cm3 g-1). The corresponding hollow mesoporous silica spheres (HMSS) with controllable mesopores (6.0-8.2 nm), high surface areas (239.9-326.5 m2 g-1 …


Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang Jan 2014

Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang

Australian Institute for Innovative Materials - Papers

We here describe the extraordinary performance of NASICON Na3V2(PO4)3-carbon nanofiber (NVP-CNF) composites with ultra-high power and excellent cycling performance. NVP-CNFs are composed of CNFs at the center part and partly embedded NVP nanoparticles in the shell. We first report this unique morphology of NVP-CNFs for the electrode material of secondary batteries as well as for general energy conversion materials. Our NVP-CNFs show not only a high discharge capacity of approx. 88.9 mA h g-1 even at a high current density of 50 C but also approx. 93% cyclic retention property after …


Microwave Autoclave Synthesized Multi-Layer Graphene/Single-Walled Carbon Nanotube Composites For Free-Standing Lithium-Ion Battery Anodes, Chao Zhong, Jia-Zhao Wang, David Wexler, Hua-Kun Liu Jan 2014

Microwave Autoclave Synthesized Multi-Layer Graphene/Single-Walled Carbon Nanotube Composites For Free-Standing Lithium-Ion Battery Anodes, Chao Zhong, Jia-Zhao Wang, David Wexler, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Multi-layer graphene sheets have been synthesized by a time-efficient microwave autoclave method and used to form composites in situ with single-walled carbon nanotubes. The application of these composites as flexible free-standing film electrodes was then investigated. According to the transmission electron microscopy and X-ray diffraction characterizations, the average d-spacing of the graphene-single-walled carbon nanotube composites was 0.41 nm, which was obviously larger than that of the as-prepared pure graphene (0.36 nm). The reversible Li-cycling properties of the free-standing films have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results showed that the free-standing composite film with 70 wt% …


A Germanium/Single-Walled Carbon Nanotube Composite Paper As A Free-Standing Anode For Lithium-Ion Batteries, Jun Wang, Jiazhao Wang, Ziqi Sun, Xuanwen Gao, Chao Zhong, Shulei Chou, Hua-Kun Liu Jan 2014

A Germanium/Single-Walled Carbon Nanotube Composite Paper As A Free-Standing Anode For Lithium-Ion Batteries, Jun Wang, Jiazhao Wang, Ziqi Sun, Xuanwen Gao, Chao Zhong, Shulei Chou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g−1 after 40 cycles at a current density of 25 mA g−1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for …


A Computational Study Of Carbon Dioxide Adsorption On Solid Boron, Qiao Sun, Meng Wang, Zhen Li, Aijun Du, Debra J. Searles Jan 2014

A Computational Study Of Carbon Dioxide Adsorption On Solid Boron, Qiao Sun, Meng Wang, Zhen Li, Aijun Du, Debra J. Searles

Australian Institute for Innovative Materials - Papers

Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B 28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results …


Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn, Javad Foroughi, Geoffrey M. Spinks, Dennis Antiohos, Azadehsadat Mirabedini, Sanjeev Gambhir, Gordon G. Wallace, Shaban Reza Ghorbani, Germanas Peleckis, Mikhail Kozlov, Marcio Lima, Ray Baughman Jan 2014

Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn, Javad Foroughi, Geoffrey M. Spinks, Dennis Antiohos, Azadehsadat Mirabedini, Sanjeev Gambhir, Gordon G. Wallace, Shaban Reza Ghorbani, Germanas Peleckis, Mikhail Kozlov, Marcio Lima, Ray Baughman

Australian Institute for Innovative Materials - Papers

An efficient procedure for the fabrication of highly conductive carbon nanotube/graphene hybrid yarns has been developed. To start, arrays of vertically aligned multi-walled carbon nanotubes (MWNT) are converted into indefinitely long MWNT sheets by drawing. Graphene flakes are then deposited onto the MWNT sheets by electrospinning to form a composite structure that is transformed into yarn filaments by twisting. The process is scalable for yarn fabrication on an industrial scale. Prepared materials are characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It is found that the electrical conductivity of the composite MWNT-graphene yarns is over 900 S/cm. This value …


Dispersion And Characterization Of Arc Discharge Single-Walled Carbon Nanotubes-Towards Conducting Transparent Films, Benedikt Rosner, Dirk Guldi, Jun Chen, Andrew Minett, Rainer H. Fink Jan 2014

Dispersion And Characterization Of Arc Discharge Single-Walled Carbon Nanotubes-Towards Conducting Transparent Films, Benedikt Rosner, Dirk Guldi, Jun Chen, Andrew Minett, Rainer H. Fink

Australian Institute for Innovative Materials - Papers

This study addresses a combination of a well-developed and mild dispersion method and high-quality arc discharge single-walled carbon nanotubes (SWCNTs) as starting materials. Thus, we advance in fabrication of transparent, conducting films with extraordinary low material loss during SWCNT processing. The starting material was characterized by means of thermogravimetric analysis, high-resolution transmission electron microscopy and Raman spectroscopy. The quality of the starting material and produced dispersions was evaluated by ultraviolet and visible light absorption spectroscopy and Raman spectroscopy. A transparent conductive film was fabricated by drop-casting, whereas films were obtained with electrical to optical conductivity ratios (σDC/σOp) as high as …


Current-Voltage Characteristics Of Nb-Carbon-Nb Junctions, I P. Nevirkovets, S E. Shafranjuk, O Chernyashevskyy, Nandhag Masilamani, J Ketterson Jan 2014

Current-Voltage Characteristics Of Nb-Carbon-Nb Junctions, I P. Nevirkovets, S E. Shafranjuk, O Chernyashevskyy, Nandhag Masilamani, J Ketterson

Australian Institute for Innovative Materials - Papers

We report on properties of Nb(/Ti)-carbon-(Ti/)Nb junctions fabricated on graphite flakes using e-beam lithography. The devices were characterized at temperatures above 1.8 K where a Josephson current was not observed, but the differential conductivity revealed features below the critical temperature of Nb, and overall metallic conductivity, in spite of a high-junctions resistance. Since the conductivity of graphite along the planes is essentially two-dimensional (2D), we use a theoretical model developed for metal/graphene junctions for interpretation of the results. The model involves two very different graphene "access" lengths. The shorter length characterizes ordinary tunneling between the three-dimensional Nb(/Ti) electrode and 2D …


A Novel Carbon Nanotube Modified Scaffold As An Efficient Biocathode Material For Improved Microbial Electrosynthesis, Ludovic Jourdin, Stefano Freguia, Bogdan C. Donose, Jun Chen, Gordon G. Wallace, Jurg Keller, Victoria Flexer Jan 2014

A Novel Carbon Nanotube Modified Scaffold As An Efficient Biocathode Material For Improved Microbial Electrosynthesis, Ludovic Jourdin, Stefano Freguia, Bogdan C. Donose, Jun Chen, Gordon G. Wallace, Jurg Keller, Victoria Flexer

Australian Institute for Innovative Materials - Papers

We report on a novel biocompatible, highly conductive three-dimensional cathode manufactured by direct growth of flexible multiwalled carbon nanotubes on reticulated vitreous carbon (NanoWeb-RVC) for the improvement of microbial bioelectrosynthesis (MES). NanoWeb-RVC allows for an enhanced bacterial attachment and biofilm development within its hierarchical porous structure. 1.7 and 2.6 fold higher current density and acetate bioproduction rate normalized to total surface area were reached on NanoWeb-RVC versus a carbon plate control for the microbial reduction of carbon dioxide by mixed cultures. This is the first study showing better intrinsic efficiency as biocathode material of a three-dimensional electrode versus a flat …


Capacitive Behavior Of Latex/Single-Wall Carbon Nanotube Stretchable Electrodes, Hyeon Taek Jeong, Byung Kim, Robert Gorkin Iii, Michael J. Higgins, Gordon G. Wallace Jan 2014

Capacitive Behavior Of Latex/Single-Wall Carbon Nanotube Stretchable Electrodes, Hyeon Taek Jeong, Byung Kim, Robert Gorkin Iii, Michael J. Higgins, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

In this report single-wall carbon nanotubes (SWNTs) were coated onto latex using spray coating to produce a stretchable electrode. The electrochemical properties of the electrode were determined using cyclic voltammetry and electrochemical impedance spectroscopy and galvanostatic charge/discharge tests were also carried out. The impedance and charge/discharge curves of the latex/SWNTs electrode showed good capacitive behavior even after repetitive stretching to 100% strain. The highest capacitance value obtained for the unstretched SWNTs electrode was 119 F g−1 in 1 M Na2SO4 at 5 mV s−1. After the 100th stretch ≈ 80% of the original capacitance value was retained.


Fabrication Of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films For Supercapacitors, Dongdong Xu, Qun Xu, Kaixi Wang, Jun Chen, Zhimin Chen Jan 2014

Fabrication Of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films For Supercapacitors, Dongdong Xu, Qun Xu, Kaixi Wang, Jun Chen, Zhimin Chen

Australian Institute for Innovative Materials - Papers

A hierarchical high-performance electrode with nanoacanthine-style polyaniline (PANI) deposited onto a carbon nanofiber/graphene oxide (CNF/GO) template was successfully prepared via an in situ polymerization process. The morphology analysis shows that introducing one-dimensional (1D) CNF could significantly decrease/inhibit the staking of laminated GO to form an open-porous CNF/GO architecture. Followed with in situ facial deposition of PANI, the as-synthesized PANI modified CNF/GO exhibits three-dimensional (3D) hierarchical layered nanoarchitecture, which favors the diffusion of the electrolyte ions into the inner region of active materials. The hierarchical free-standing electrodes were directly fabricated into sandwich structured supercapacitors using 1 M H2SO4 as the electrolyte …


A New Strategy For Integrating Abundant Oxygen Functional Groups Into Carbon Felt Electrode For Vanadium Redox Flow Batteries, Ki Jae Kim, Seung-Wook Lee, Taeeun Yim, Jae-Geun Kim, Jang Wook Choi, Jung Ho Kim, Min-Sik Park, Young-Jun Kim Jan 2014

A New Strategy For Integrating Abundant Oxygen Functional Groups Into Carbon Felt Electrode For Vanadium Redox Flow Batteries, Ki Jae Kim, Seung-Wook Lee, Taeeun Yim, Jae-Geun Kim, Jang Wook Choi, Jung Ho Kim, Min-Sik Park, Young-Jun Kim

Australian Institute for Innovative Materials - Papers

The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high …


Fabrication Of Graphene Foam Supported Carbon Nanotube/Polyaniline Hybrids For High-Performance Supercapacitor Applications, Hongxia Yang, Nan Wang, Qun Xu, Zhimin Chen, Yumei Ren, Joselito M. Razal, Jun Chen Jan 2014

Fabrication Of Graphene Foam Supported Carbon Nanotube/Polyaniline Hybrids For High-Performance Supercapacitor Applications, Hongxia Yang, Nan Wang, Qun Xu, Zhimin Chen, Yumei Ren, Joselito M. Razal, Jun Chen

Australian Institute for Innovative Materials - Papers

A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphenepyrrole/ carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared …