Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Carbon

PDF

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 35

Full-Text Articles in Physical Sciences and Mathematics

Thermionic Emission Properties Of Novel Carbon Nanostructures., Andriy Sherehiy Dec 2014

Thermionic Emission Properties Of Novel Carbon Nanostructures., Andriy Sherehiy

Electronic Theses and Dissertations

Materials with low work function values (< 2 eV) are highly in demand for low temperature thermionic electron emission, which is a key phenomenon for waste heat recovery applications. Here we present the study of the thermionic emission of the hybrid structure phosphorus, (P) doped diamond nano crystals grown on conical carbon nanotubes (CCNTs). The CCNTs provide the conducting backbone for the P-doped diamond nanocrystals. In the first part of this thesis thermionic emission properties of conical carbon nanotubes (CCNTs) grown on platinum wires and planar graphite foils were investigated. The work function (Φ) values extracted from the thermionic emission data range from 4.1 to 4.7 eV. The range of Φ values is attributed to the morphological characteristics, such as tip radius, aspect ratio, density, and wall structure of CCNTs. The observed lower values for Φ are significantly smaller than that of multi-walled carbon nanotubes (MWNTs). The reduced Φ values are attributed to field penetration effect as a result of the local field enhancement from these structures having high aspect ratio and an excellent field enhancement factor. The high amplification of the external field at the apex of the nanostructures is capable of reducing both the barrier height and the width, in turn contributing to the improved emission current at lower temperatures. The ultraviolet photoemission spectroscopy data of CCNTs grown on Pt wires are in reasonable agreement with the thermionic emission data. In the next part of the thesis we present work function reduction of phosphorus (P) doped (i) diamond nanocrystals grown on conical carbon nanotubes (CCNTs) and (ii) diamond films grown on silicon substrates. Thermionic emission measurements from phosphorus doped diamond crystals on CCNTs resulted in work function value of 2.23 eV. The reduced work-function is interpreted as due to the presence of the surface states and midband-gap states and no evidence for negative electron affinity was seen. However, Ultraviolet photo-spectroscopy studies on phosphorus doped diamond films yielded a work function value of ~1.8 eV with a negative electron affinity (NEA) value of 1.2 eV. Detailed band diagrams are presented to support the observed values for both cases. In addition we determined the work function values of nanocrystalline P doped diamond films grown on W foil to be significantly lower, 1.0- 1.33 eV compared to the hybrid structure and polycrystalline film on Si substrates. We studied tungsten (W) nanowires as an alternative material in place of CCNT as the supporting and conducting channel for P doped diamond crystals in a new hybrid structure. We described the process of fabrication of arrays of vertical W nanowires by microwave plasma treatment and synthesis of P doped nanocrystalline diamond on top of the reduced W nanowires. Thermionic emission measurements from the alternative hybrid structure resulted in high value of the work function ~ 5.1 eV.


Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman Nov 2014

Catechol Oxidation By Ozone And Hydroxyl Radicals At The Air-Water Interface, Elizabeth A. Pillar, Robert C. Camm, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air–water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon …


Differential Effects Of Canopy Trimming And Litter Deposition On Litterfall And Nutrient Dynamics In A Wet Subtropical Forest, Steven J. Hall, Whendee L. Silver, Grizelle González Nov 2014

Differential Effects Of Canopy Trimming And Litter Deposition On Litterfall And Nutrient Dynamics In A Wet Subtropical Forest, Steven J. Hall, Whendee L. Silver, Grizelle González

Steven J. Hall

Humid tropical forests have the highest rates of litterfall production globally, which fuels rapid nutrient recycling and high net ecosystem production. Severe storm events significantly alter patterns in litterfall mass and nutrient dynamics through a combination of canopy disturbance and litter deposition. In this study, we used a large-scale long-term manipulation experiment to explore the separate and combined effects of canopy trimming and litter deposition on litterfall rates and litter nutrient concentrations and content. The deposition of fine litter associated with the treatments was equivalent to more than two times the annual fine litterfall mass and nutrient content in control …


Small Carbon Chains In Circumstellar Envelopes, R. J. Hargreaves, K. Hinkle, P. F. Bernath Nov 2014

Small Carbon Chains In Circumstellar Envelopes, R. J. Hargreaves, K. Hinkle, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

Observations of carbon-rich circumstellar envelopes were made using the Phoenix spectrograph on the Gemini South telescope to determine the abundance of small carbon chain molecules. Vibration-rotation lines of the ν3 antisymmetric stretch of C3 near 2040 cm-1 (4.902 μm) have been used to determine the column density for four carbon-rich circumstellar envelopes: CRL 865, CRL 1922, CRL 2023 and IRC +10216. We additionally calculate the column density of C5 for IRC +10216, and provide an upper limit for five more objects. An upper limit estimate for the C7 column density is also provided for IRC+10216. A …


Line Lists For The A2Π-X 2Σ+ (Red) And B2Σ+-X 2Σ+ (Violet) Systems Of Cn, 13c14n, And 12c15n, And Application To Astronomicalspectra, Christopher Sneden, Sara Lucatello, Ram S. Ram, James S. A. Brooke, Peter Bernath Oct 2014

Line Lists For The A2Π-X 2Σ+ (Red) And B2Σ+-X 2Σ+ (Violet) Systems Of Cn, 13c14n, And 12c15n, And Application To Astronomicalspectra, Christopher Sneden, Sara Lucatello, Ram S. Ram, James S. A. Brooke, Peter Bernath

Chemistry & Biochemistry Faculty Publications

New red and violet system line lists for the CN isotopologues 13C14N and 12C15N have been generated. These new transition data are combined with those previously derived for 12C14N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in …


Peatland-Stream Hydrological And Biogeochemical Connectivity In The James Bay Lowland, Ontario, Meghan Kline Sep 2014

Peatland-Stream Hydrological And Biogeochemical Connectivity In The James Bay Lowland, Ontario, Meghan Kline

Electronic Thesis and Dissertation Repository

The Hudson-James Bay Lowlands are the second largest peatland dominated area on the planet, and are expected to be particularly vulnerable to future climate change. Changes in climate will affect peatland hydrology and biogeochemistry, impacting the aquatic ecosystems this region supports, however there is limited information about the hydrology and biogeochemistry of this landscape under current conditions. This thesis focuses on assessing the nature of hydrological and biogeochemical connectivity between a fen and 2nd order channel in the Central James Bay Lowland, Ontario. Specifically the study focuses on the role of preferential hydrological flowpaths in the riparian area, such …


Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner Aug 2014

Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner

Dartmouth Scholarship

We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from …


Climate Change And Forest Fires Synergistically Drive Widespread Melt Events Of The Greenland Ice Sheet, Kaitlin M. Keegan, Mary R. Albert, Joseph R. Mcconnell, Ian Baker Jun 2014

Climate Change And Forest Fires Synergistically Drive Widespread Melt Events Of The Greenland Ice Sheet, Kaitlin M. Keegan, Mary R. Albert, Joseph R. Mcconnell, Ian Baker

Dartmouth Scholarship

In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the …


Using Green Building To Mitigate Climate Change In The Twenty-First Century, Lisa Battiste Jun 2014

Using Green Building To Mitigate Climate Change In The Twenty-First Century, Lisa Battiste

Honors Theses

The need for green buildings are rapidly becoming more important as the nation faces impending energy crises and the world heats up from the overabundance of greenhouse gases. Buildings in America are one of the largest consumers of energy and one of the greatest contributors to CO2 emissions; more than the total emissions from all the transportation vehicles used every day. By making the construction and use of buildings more resource efficient, this can help alleviate the environmental strain of climate change. Neutralizing or eliminating carbon emissions from building use will significantly reduce the amount of greenhouse gases in the …


Tree Biomass And Carbon Storage In An Old Growth Forest In Southeastern Ohio, Adam Levesque, Christina Gall, Doug Fox, Karen Washburne, Sam Scherneck, Mark A. Gathany Apr 2014

Tree Biomass And Carbon Storage In An Old Growth Forest In Southeastern Ohio, Adam Levesque, Christina Gall, Doug Fox, Karen Washburne, Sam Scherneck, Mark A. Gathany

The Research and Scholarship Symposium (2013-2019)

Recently there has been increased interest in determining the baseline levels of carbon storage in different ecosystems, because of greater concern over the issue of global climate change and increased atmospheric CO2 concentrations. With a better understanding of carbon sequestration in various ecosystems, we can use land in a more environment-conscious way, and negative human impacts on the earth can be decreased. Forest ecosystems are especially important, because they have an immense capacity to store carbon as compared to other ecosystems. The majority of carbon sequestered in forest ecosystems is contained in tree biomass, but there is also carbon contained …


Shaping Carbon Nanotube Forests For Field Emission, Benjamin Pound Apr 2014

Shaping Carbon Nanotube Forests For Field Emission, Benjamin Pound

Student Showcase

Field emission is a phenomenon where electrons are extracted from a conducting material by an external electric field. This effect has been used for electron sources for many applications, from electron microscopes to flat-panel displays. One undesirable feature of field emitters is that they often require high turn-on voltages. One way to improve the field emission is to decrease the tip size. In previous works, single carbon nanotubes (CNTs) with nanometer tip sizes have been used as field emitters, and have achieved currents comparable or higher than commercial field emitters at relatively low operating voltages. However, the single CNT field …


Hydrology And Biogeochemistry Of A Bog-Fen-Tributary Complex In The Hudson Bay Lowlands, Ontario, Canada, Thomas A. Ulanowski Mar 2014

Hydrology And Biogeochemistry Of A Bog-Fen-Tributary Complex In The Hudson Bay Lowlands, Ontario, Canada, Thomas A. Ulanowski

Electronic Thesis and Dissertation Repository

The Hudson Bay Lowlands (HBL) contains 26 Gt C sequestered in a 2 meter thick layer of peat which blankets a quarter of Ontario, Canada. The hydrological and chemical influence of the HBL peatlands to surface waters is recognized, but information on peatland runoff processes and the evolution of groundwater through this vast, carbon-rich landscape remain scant. This study focused on elucidating the groundwater flow patterns of a bog-fen-tributary complex in the central region of the HBL, and estimating exports of groundwater, dissolved organic carbon (DOC), total (THg), and methyl (MeHg) mercury during the 2011 ice-free season. Hydrometric data, combined …


Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton Mar 2014

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton

Gordon Wallace

Aqueous dispersions of reduced graphene oxide (rGO) and multi walled carbon nanotubes (MWCNT) were fabricated through a modified chemical reduction method. The significant advantage of the method developed here is the omission of any stabilising compound or organic solvent to obtain stable rGO-MWCNT dispersions. Significantly biological entities, in this case the enzyme glucose oxidase (GOx), can be successfully incorporated into the dispersion. These dispersions were characterised using XPS, SEM, zeta potential and particle size measurements which showed that the dispersion stability is not sacrificed with the addition of GOx, and significantly, the electrical properties of the rGO and MWCNTs are …


Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu Mar 2014

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu

Gordon Wallace

This work aims to develop biocompatible non-toxic materials for implantable bio-electronic cells. Polypyrrole (PPy)–carbon nanotube (CNT) composites with varied ratios of PPy to CNTs were chemically synthesized and used as cathodes with the support of cellulose paper. Zinc foil was used as the anode material due to its non-toxicity and moderate dissolution rate in aqueous solutions. Simulated body fluids (SBFs) with various protein concentrations were applied as electrolytes in this battery system. The PPy–CNT|Zn cell is capable of being discharged up to 24.5 hours at a current density of 60 μA cm−2 in a protein free SBF. The batteries have …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Mar 2014

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Gordon Wallace

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Mar 2014

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Gordon Wallace

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.


Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Mar 2014

Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Shi Xue Dou

From energy and environmental consideration, an industrial waste product, coal tar pitch (CTP), is used as the carbon source for Si/AC composite. We exploited a facile sintering method to largely scale up Si/amorphous carbon nanocomposite. The composites with 20 wt.% silicon with PVdF binder exhibited stable lithium storage ability for prolonged cycling. The composite anode delivered a capacity of 400.3 mAh g−1 with a high capacity retention of 71.3% after 1000 cycles. Various methods are used to investigate the reason for the outstanding cyclability. The results indicate that the silicon nanoparticles are wrapped by amorphous SiOx and AC in Si/AC …


Improved Line Data For The Swan System 12c13c Isotopologue, Ram S. Ram, James S. A. Brooke, Peter F. Bernath, Christopher Sneden, Sara Lucatello Mar 2014

Improved Line Data For The Swan System 12c13c Isotopologue, Ram S. Ram, James S. A. Brooke, Peter F. Bernath, Christopher Sneden, Sara Lucatello

Chemistry & Biochemistry Faculty Publications

We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the 12C 13C isotopologue Swan d3Π-a3Π system 0-0, 0-1, 0-2, 1-0, 1-1, 1-2, 2-0, 2-1, and 2-2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the 12C13C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The 12C13C line data were combined with similar data for 12C2, reported in a companion paper, and applied …


Impacts Of Climate Change On Soil Microorganisms In Northern Hardwood Forests, Carley Jane Kratz Jan 2014

Impacts Of Climate Change On Soil Microorganisms In Northern Hardwood Forests, Carley Jane Kratz

Dissertations, Master's Theses and Master's Reports - Open

As global climate continues to change, it becomes more important to understand possible feedbacks from soils to the climate system. This dissertation focuses on soil microbial community responses to climate change factors in northern hardwood forests. Two soil warming experiments at Harvard Forest in Massachusetts, and a climate change manipulation experiment with both elevated temperature and increased moisture inputs in Michigan were sampled. The hyphal in-growth bag method was to understand how soil fungal biomass and respiration respond to climate change factors. Our results from phospholipid fatty acid (PLFA) analyses suggest that the hyphal in-growth bag method allows relatively pure …


Modeling The Effects Of The Hemlock Woolly Adelgid On Carbon Storage In Northern New England Forests, Jeffrey John Krebs Jan 2014

Modeling The Effects Of The Hemlock Woolly Adelgid On Carbon Storage In Northern New England Forests, Jeffrey John Krebs

Graduate College Dissertations and Theses

The hemlock woolly adelgid (HWA, Adelges tsugae Annand) is an invasive insect that threatens to eradicate native eastern hemlock (Tsuga canadensis (L.) Carr.) across the eastern United States. In southern New England and southern Appalachian forests, HWA-induced hemlock mortality has impacted carbon (C) flux by altering stand age, litter composition, species composition, and coarse woody debris levels. However, no one has examined how total C storage and sequestration may be impacted by these changes. Further, while projections are that HWA will ultimately infest hemlock across its entire geographic range, the majority of studies have been limited to southern New …


A Triblock-Copolymer-Templating Route To Carbon Spheres@Sba-15 Large Mesopore Core-Shell And Hollow Structures, Jianping Yang, Xianghong Qian, Minjun Chen, Jianwei Fan, Hua-Kun Liu, Weixian Zhang Jan 2014

A Triblock-Copolymer-Templating Route To Carbon Spheres@Sba-15 Large Mesopore Core-Shell And Hollow Structures, Jianping Yang, Xianghong Qian, Minjun Chen, Jianwei Fan, Hua-Kun Liu, Weixian Zhang

Australian Institute for Innovative Materials - Papers

The fabrication of mesoporous core-shell and hollow spheres with ordered mesostructures and tunable large pore sizes is highly desirable for fundamental research and practical applications. A direct triblock-copolymer-templating coating approach has been provided for the synthesis of carbon sphere@mesoporous silica core-shell (CS@SBA-15) and hollow structures in an acidic medium at room temperature. These CS@SBA-15 core-shell structures possess large mesopores (6.3-8.4 nm), high surface areas (318.1-438.4 m2 g-1) and large pore volumes (0.31-0.36 cm3 g-1). The corresponding hollow mesoporous silica spheres (HMSS) with controllable mesopores (6.0-8.2 nm), high surface areas (239.9-326.5 m2 g-1 …


Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang Jan 2014

Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang

Australian Institute for Innovative Materials - Papers

We here describe the extraordinary performance of NASICON Na3V2(PO4)3-carbon nanofiber (NVP-CNF) composites with ultra-high power and excellent cycling performance. NVP-CNFs are composed of CNFs at the center part and partly embedded NVP nanoparticles in the shell. We first report this unique morphology of NVP-CNFs for the electrode material of secondary batteries as well as for general energy conversion materials. Our NVP-CNFs show not only a high discharge capacity of approx. 88.9 mA h g-1 even at a high current density of 50 C but also approx. 93% cyclic retention property after …


Microwave Autoclave Synthesized Multi-Layer Graphene/Single-Walled Carbon Nanotube Composites For Free-Standing Lithium-Ion Battery Anodes, Chao Zhong, Jia-Zhao Wang, David Wexler, Hua-Kun Liu Jan 2014

Microwave Autoclave Synthesized Multi-Layer Graphene/Single-Walled Carbon Nanotube Composites For Free-Standing Lithium-Ion Battery Anodes, Chao Zhong, Jia-Zhao Wang, David Wexler, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Multi-layer graphene sheets have been synthesized by a time-efficient microwave autoclave method and used to form composites in situ with single-walled carbon nanotubes. The application of these composites as flexible free-standing film electrodes was then investigated. According to the transmission electron microscopy and X-ray diffraction characterizations, the average d-spacing of the graphene-single-walled carbon nanotube composites was 0.41 nm, which was obviously larger than that of the as-prepared pure graphene (0.36 nm). The reversible Li-cycling properties of the free-standing films have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results showed that the free-standing composite film with 70 wt% …


A Germanium/Single-Walled Carbon Nanotube Composite Paper As A Free-Standing Anode For Lithium-Ion Batteries, Jun Wang, Jiazhao Wang, Ziqi Sun, Xuanwen Gao, Chao Zhong, Shulei Chou, Hua-Kun Liu Jan 2014

A Germanium/Single-Walled Carbon Nanotube Composite Paper As A Free-Standing Anode For Lithium-Ion Batteries, Jun Wang, Jiazhao Wang, Ziqi Sun, Xuanwen Gao, Chao Zhong, Shulei Chou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g−1 after 40 cycles at a current density of 25 mA g−1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for …


A Computational Study Of Carbon Dioxide Adsorption On Solid Boron, Qiao Sun, Meng Wang, Zhen Li, Aijun Du, Debra J. Searles Jan 2014

A Computational Study Of Carbon Dioxide Adsorption On Solid Boron, Qiao Sun, Meng Wang, Zhen Li, Aijun Du, Debra J. Searles

Australian Institute for Innovative Materials - Papers

Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B 28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results …


Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn, Javad Foroughi, Geoffrey M. Spinks, Dennis Antiohos, Azadehsadat Mirabedini, Sanjeev Gambhir, Gordon G. Wallace, Shaban Reza Ghorbani, Germanas Peleckis, Mikhail Kozlov, Marcio Lima, Ray Baughman Jan 2014

Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn, Javad Foroughi, Geoffrey M. Spinks, Dennis Antiohos, Azadehsadat Mirabedini, Sanjeev Gambhir, Gordon G. Wallace, Shaban Reza Ghorbani, Germanas Peleckis, Mikhail Kozlov, Marcio Lima, Ray Baughman

Australian Institute for Innovative Materials - Papers

An efficient procedure for the fabrication of highly conductive carbon nanotube/graphene hybrid yarns has been developed. To start, arrays of vertically aligned multi-walled carbon nanotubes (MWNT) are converted into indefinitely long MWNT sheets by drawing. Graphene flakes are then deposited onto the MWNT sheets by electrospinning to form a composite structure that is transformed into yarn filaments by twisting. The process is scalable for yarn fabrication on an industrial scale. Prepared materials are characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It is found that the electrical conductivity of the composite MWNT-graphene yarns is over 900 S/cm. This value …


Dispersion And Characterization Of Arc Discharge Single-Walled Carbon Nanotubes-Towards Conducting Transparent Films, Benedikt Rosner, Dirk Guldi, Jun Chen, Andrew Minett, Rainer H. Fink Jan 2014

Dispersion And Characterization Of Arc Discharge Single-Walled Carbon Nanotubes-Towards Conducting Transparent Films, Benedikt Rosner, Dirk Guldi, Jun Chen, Andrew Minett, Rainer H. Fink

Australian Institute for Innovative Materials - Papers

This study addresses a combination of a well-developed and mild dispersion method and high-quality arc discharge single-walled carbon nanotubes (SWCNTs) as starting materials. Thus, we advance in fabrication of transparent, conducting films with extraordinary low material loss during SWCNT processing. The starting material was characterized by means of thermogravimetric analysis, high-resolution transmission electron microscopy and Raman spectroscopy. The quality of the starting material and produced dispersions was evaluated by ultraviolet and visible light absorption spectroscopy and Raman spectroscopy. A transparent conductive film was fabricated by drop-casting, whereas films were obtained with electrical to optical conductivity ratios (σDC/σOp) as high as …


Current-Voltage Characteristics Of Nb-Carbon-Nb Junctions, I P. Nevirkovets, S E. Shafranjuk, O Chernyashevskyy, Nandhag Masilamani, J Ketterson Jan 2014

Current-Voltage Characteristics Of Nb-Carbon-Nb Junctions, I P. Nevirkovets, S E. Shafranjuk, O Chernyashevskyy, Nandhag Masilamani, J Ketterson

Australian Institute for Innovative Materials - Papers

We report on properties of Nb(/Ti)-carbon-(Ti/)Nb junctions fabricated on graphite flakes using e-beam lithography. The devices were characterized at temperatures above 1.8 K where a Josephson current was not observed, but the differential conductivity revealed features below the critical temperature of Nb, and overall metallic conductivity, in spite of a high-junctions resistance. Since the conductivity of graphite along the planes is essentially two-dimensional (2D), we use a theoretical model developed for metal/graphene junctions for interpretation of the results. The model involves two very different graphene "access" lengths. The shorter length characterizes ordinary tunneling between the three-dimensional Nb(/Ti) electrode and 2D …


A Novel Carbon Nanotube Modified Scaffold As An Efficient Biocathode Material For Improved Microbial Electrosynthesis, Ludovic Jourdin, Stefano Freguia, Bogdan C. Donose, Jun Chen, Gordon G. Wallace, Jurg Keller, Victoria Flexer Jan 2014

A Novel Carbon Nanotube Modified Scaffold As An Efficient Biocathode Material For Improved Microbial Electrosynthesis, Ludovic Jourdin, Stefano Freguia, Bogdan C. Donose, Jun Chen, Gordon G. Wallace, Jurg Keller, Victoria Flexer

Australian Institute for Innovative Materials - Papers

We report on a novel biocompatible, highly conductive three-dimensional cathode manufactured by direct growth of flexible multiwalled carbon nanotubes on reticulated vitreous carbon (NanoWeb-RVC) for the improvement of microbial bioelectrosynthesis (MES). NanoWeb-RVC allows for an enhanced bacterial attachment and biofilm development within its hierarchical porous structure. 1.7 and 2.6 fold higher current density and acetate bioproduction rate normalized to total surface area were reached on NanoWeb-RVC versus a carbon plate control for the microbial reduction of carbon dioxide by mixed cultures. This is the first study showing better intrinsic efficiency as biocathode material of a three-dimensional electrode versus a flat …


Capacitive Behavior Of Latex/Single-Wall Carbon Nanotube Stretchable Electrodes, Hyeon Taek Jeong, Byung Kim, Robert Gorkin Iii, Michael J. Higgins, Gordon G. Wallace Jan 2014

Capacitive Behavior Of Latex/Single-Wall Carbon Nanotube Stretchable Electrodes, Hyeon Taek Jeong, Byung Kim, Robert Gorkin Iii, Michael J. Higgins, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

In this report single-wall carbon nanotubes (SWNTs) were coated onto latex using spray coating to produce a stretchable electrode. The electrochemical properties of the electrode were determined using cyclic voltammetry and electrochemical impedance spectroscopy and galvanostatic charge/discharge tests were also carried out. The impedance and charge/discharge curves of the latex/SWNTs electrode showed good capacitive behavior even after repetitive stretching to 100% strain. The highest capacitance value obtained for the unstretched SWNTs electrode was 119 F g−1 in 1 M Na2SO4 at 5 mV s−1. After the 100th stretch ≈ 80% of the original capacitance value was retained.