Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Effects Of Ether Vs. Ester Linkage On Lipid Bilayer Structure And Water Permeability., S. Deren Guler, D. Dipon Ghosh, Jianjun Pan, John Mathai, Mark Zeidel, John Nagle, Stephanie Tristram-Nagle Aug 2014

Effects Of Ether Vs. Ester Linkage On Lipid Bilayer Structure And Water Permeability., S. Deren Guler, D. Dipon Ghosh, Jianjun Pan, John Mathai, Mark Zeidel, John Nagle, Stephanie Tristram-Nagle

Prof. Stephanie Tristram-Nagle Ph.D.

The structure and water permeability of bilayers composed of the ether-linked lipid, dihexadecylphosphatidylcholine (DHPC), were studied and compared with the ester-linked lipid, dipalmitoylphosphaditdylcholine (DPPC). Wide angle X-ray scattering on oriented bilayers in the fluid phase indicate that the area per lipid A is slightly larger for DHPC than for DPPC. Low angle X-ray scattering yields A=65.1A(2) for DHPC at 48 degrees C. LAXS data provide the bending modulus, K(C)=4.2x10(-13)erg, and the Hamaker parameter H=7.2x10(-14)erg for the van der Waals attractive interaction between neighboring bilayers. For the low temperature phases with ordered hydrocarbon chains, we confirm the transition from a tilted …


Molecular Structures Of Fluid Phase Phosphatidylglycerol Bilayers As Determined By Small Angle Neutron And X-Ray Scattering., Jianjun Pan, Frederick Heberle, Stephanie Tristram-Nagle, Michelle Szymanski, Mary Koepfinger, John Katsaras, Norbert Kucerka Aug 2014

Molecular Structures Of Fluid Phase Phosphatidylglycerol Bilayers As Determined By Small Angle Neutron And X-Ray Scattering., Jianjun Pan, Frederick Heberle, Stephanie Tristram-Nagle, Michelle Szymanski, Mary Koepfinger, John Katsaras, Norbert Kucerka

Prof. Stephanie Tristram-Nagle Ph.D.

We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model - which was derived from molecular dynamics simulations - including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive …


Alamethicin Aggregation In Lipid Membranes., Jianjun Pan, Stephanie Tristram-Nagle, John Nagle Aug 2014

Alamethicin Aggregation In Lipid Membranes., Jianjun Pan, Stephanie Tristram-Nagle, John Nagle

Prof. Stephanie Tristram-Nagle Ph.D.

X-ray scattering features induced by aggregates of alamethicin (Alm) were obtained in oriented stacks of model membranes of DOPC(diC18:1PC) and diC22:1PC. The first feature obtained near full hydration was Bragg rod in-plane scattering near 0.11 A(-1) in DOPC and near 0.08 A(-1) in diC22:1PC at a 1:10 Alm:lipid ratio. This feature is interpreted as bundles consisting of n Alm monomers in a barrel-stave configuration surrounding a water pore. Fitting the scattering data to previously published molecular dynamics simulations indicates that the number of peptides per bundle is n = 6 in DOPC and n >or= 9 in diC22:1PC. The larger …


Crac Motif Peptide Of The Hiv-1 Gp41 Protein Thins Sopc Membranes And Interacts With Cholesterol., Alexander Greenwood, Jianjun Pan, Thalia Mills, John Nagle, Richard Epand, Stephanie Tristram-Nagle Aug 2014

Crac Motif Peptide Of The Hiv-1 Gp41 Protein Thins Sopc Membranes And Interacts With Cholesterol., Alexander Greenwood, Jianjun Pan, Thalia Mills, John Nagle, Richard Epand, Stephanie Tristram-Nagle

Prof. Stephanie Tristram-Nagle Ph.D.

This study uses low-angle (LAXS) and wide-angle (WAXS) X-ray synchrotron scattering, volume measurements and thin layer chromatography to determine the structure and interactions of SOPC, SOPC/cholesterol mixtures, SOPC/peptide and SOPC/cholesterol/peptide mixtures. N-acetyl-LWYIK-amide (LWYIK) represents the naturally-occurring CRAC motif segment in the pretransmembrane region of the gp41 protein of HIV-1, and N-acetyl-IWYIK-amide (IWYIK), an unnatural isomer, is used as a control. Both peptides thin the SOPC bilayer by approximately 3 A, and cause the area/unit cell (peptide+SOPC) to increase by approximately 9 A2 from the area/lipid of SOPC at 30 degrees C (67.0+/-0.9 A2). Model fitting suggests that LWYIK's average position …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin May 2014

Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to …


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Feb 2014

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Thomas E. Wilson

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Cryogenic Test Of A 750 Mhz Superconducting Rf Dipole Crabbing Cavity, A. Castilla, Hyekyoung Park, J. R. Delayen Jan 2014

Cryogenic Test Of A 750 Mhz Superconducting Rf Dipole Crabbing Cavity, A. Castilla, Hyekyoung Park, J. R. Delayen

Physics Faculty Publications

A superconducting rf dipole cavity has been designed to address the challenges of a high repetition rate (750 MHz), high current for both electron/ion species (0.5/3 A per bunch), and large crossing angle (50 mrad) at the interaction points (IPs) crabbing system for the Medium Energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The cavity prototype built at Niowave, Inc. has been tested at the Jefferson Lab facilities. In this work we present a detailed analysis of the prototype cavity performance at 4 K and 2 K, corroborating the absence of hard multipacting barriers that could limit the desired transverse …


Ionizing Radiation Detection Using Microstructured Optical Fiber, Stanton Dehaven Jan 2014

Ionizing Radiation Detection Using Microstructured Optical Fiber, Stanton Dehaven

Electrical & Computer Engineering Theses & Dissertations

Ionizing radiation detecting microstructured optical fibers are fabricated, modeled and experimentally measured for X-ray detection in the 10-40 keV energy range. These fibers operate by containing a scintillator material which emits visible light when exposed to ionizing radiation. An X-ray source characterized with a CdTe spectrometer is used to quantify the X-ray detection efficiency of the fibers. The solid state CdTe detector is considered 100% efficient in this energy range. A liquid filled microstructured optical fiber (MOF) is presented where numerical analysis and experimental observation leads to a geometric theory of photon transmission using total internal reflection. The model relates …


Fabrication And Measurements Of 500 Mhz Superconducting Double Spoke Cavity, Hyekyoung Park, C. S. Hopper, J. R. Delayen Jan 2014

Fabrication And Measurements Of 500 Mhz Superconducting Double Spoke Cavity, Hyekyoung Park, C. S. Hopper, J. R. Delayen

Physics Faculty Publications

The 500 MHz double spoke cavity has been designed for a high velocity application such as a compact electron accelerator at Center for Accelerator Science at Old Dominion University and is being built at Jefferson Lab. The geometry specific to the double spoke cavity requires a variety of tooling and fixtures. Also a number of joints are expected to make it difficult to maintain the geometric deviation from the design minimal. This paper will report the fabrication technique, resulting tolerance from the design, and comparison between the measurements and simulations.