Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Physics

University of Nebraska - Lincoln

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Ferroelectric Polarization Dependent Interface Effects, Xiaohui Liu Dec 2014

Ferroelectric Polarization Dependent Interface Effects, Xiaohui Liu

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Utilization of the switchable spontaneous polarization of nanometer scale ferroelectric materials offers a promising avenue for future nanoelectronic devices. In this dissertation, we use density-functional calculations and phenomenological modeling to explore the effects of interface termination on thin-film heterostructures, the effects of electron doping in bulk ferroelectric materials on ferroelectric stability, and the effects of ferroelectric polarization switching on the electronic and transport properties of interfaces.

For SrRuO3/BaTiO3/SrRuO3 epitaxial heterostructures grown on SrTiO3, we find that the built-in dipole at the BaO/RuO2 terminated interface leads to a strong preference for one polarization. …


Electron Matter Interferometry And The Electron Double-Slit Experiment, Roger Bach Apr 2014

Electron Matter Interferometry And The Electron Double-Slit Experiment, Roger Bach

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Quantum mechanics has fundamentally changed the way scientists think about the world. Quantum mechanical theory has found it's way into our everyday lives through advances in technology. In this dissertation a fundamental quantum mechanical demonstration and the technological development of a new quantum mechanical device are presented.

Double-slit diffraction is a corner stone of quantum mechanics. It illustrates key features of quantum mechanics: interference and the particle-wave duality of matter. Here we demonstrate the full realization of Richard Feynman's famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the individuals slits. …