Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Development Of A Lab-On-A-Chip Device For Rapid Nanotoxicity Assessment In Vitro, Pratikkumar Shah Dec 2014

Development Of A Lab-On-A-Chip Device For Rapid Nanotoxicity Assessment In Vitro, Pratikkumar Shah

FIU Electronic Theses and Dissertations

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can …


Imaging, Spectroscopic, Mechanical And Biocompatibility Studies Of Electrospun Tecoflex® Eg 80a Nanofibers And Composites Thereof Containing Multiwalled Carbon Nanotubes, Javier Macossay-Torres, Faheem A. Sheikh, Travis Cantu, Thomas Eubanks, M. Esther Salinas, Chakavak S. Farhangi, Hassan Ahmad, M. Shamshi Hassan, Myung-Seob Khil, Shivani K. Maffi, Hern Kim, Gary L. Bowlin Dec 2014

Imaging, Spectroscopic, Mechanical And Biocompatibility Studies Of Electrospun Tecoflex® Eg 80a Nanofibers And Composites Thereof Containing Multiwalled Carbon Nanotubes, Javier Macossay-Torres, Faheem A. Sheikh, Travis Cantu, Thomas Eubanks, M. Esther Salinas, Chakavak S. Farhangi, Hassan Ahmad, M. Shamshi Hassan, Myung-Seob Khil, Shivani K. Maffi, Hern Kim, Gary L. Bowlin

Chemistry Faculty Publications and Presentations

The present study discusses the design, development and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. …


Mass Spectrometric Characterization And Imaging Of Nanoparticles In Biological Samples, Bo Yan Aug 2014

Mass Spectrometric Characterization And Imaging Of Nanoparticles In Biological Samples, Bo Yan

Doctoral Dissertations

Nanoparticles (NPs) are being investigated widely for use in biomedical applications such as imaging, drug delivery, and cancer therapy due to their small size and readily tunable properties. The ability to accurately characterize NPs and monitor their spatial distributions is highly desirable for effective use of NPs and evaluation of their potential adverse environmental, health, and safety effects. In this dissertation, a simple, fast, and sensitive method based on laser desorption/ionization mass spectrometry (LDI-MS) to characterize and track NPs in biological systems has been developed. This method is especially well suited for characterizing core-shell structured NPs, such as quantum dots …


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Graduate Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical spectral …


Green Synthesis And Evaluation Of Catalytic Activity Of Sugar Capped Gold Nanoparticles, Yogesh A. Kherde Aug 2014

Green Synthesis And Evaluation Of Catalytic Activity Of Sugar Capped Gold Nanoparticles, Yogesh A. Kherde

Masters Theses & Specialist Projects

Owing to the importance of gold nanoparticles in catalysis, designing of them has become a major focus of the researchers. Most of the current methods available for the synthesis of gold nanoaprticles (GNPs) suffer from the challenges of polydispersity, stability and use of toxic and harmful chemicals. To overcome these limitations of conventional methods, in our present study, we made an attempt to design a method for the green synthesis of monodispersed and stable gold nanoparticles by sugars which act as reducing and stabilizing agent. Characterization of synthesized nanoparticles was done by using various analytical techniques such as transmission electron …


Nanocarbon Immobilized Membrane For Separation And Analysis, Madhuleena Bhadra May 2014

Nanocarbon Immobilized Membrane For Separation And Analysis, Madhuleena Bhadra

Dissertations

Membrane processes classically cover a wide range of applications associated with various aspects of separation and purification. Over the last few years, membrane based processes have received much interest due to their compact and modular architecture, low energy consumption and cost effective separation. With the development of diverse nanomaterials which can serve as nanosorbents, or provide specific morphology for selective solute transport, recent years have witnessed the emergence of nanocarbon based membranes that can address some of the limitations of conventional membrane processes and make feasible the next generation of breakthroughs.

The objective of this research is the exploration of …


New Multidetector Solution Could Lead To Safer Alternatives To Faulty Silicone Breast Implants, Judit D. Puskas, Geof Wyatt Apr 2014

New Multidetector Solution Could Lead To Safer Alternatives To Faulty Silicone Breast Implants, Judit D. Puskas, Geof Wyatt

Judit E. Puskas

The article discusses the effort of the University of Akron's Department of Chemical and Biomolecular Engineering to pursue research which aims to reduce or eliminate capsular contracture associated with breast implants. It notes that the new multidetector nanotechnology developed by researchers can be better alternative to silicone gel-filled breast implants. It mentions that the new technology can also help in early diagnosis and imaging of breast cancer.


Modeling And Simulation Of Coating Growth On Nanofibers, J. Wilder, C. B. Clemons, K. L. Kreider, G. W. Young, Edward A. Evans, G. Zhang Apr 2014

Modeling And Simulation Of Coating Growth On Nanofibers, J. Wilder, C. B. Clemons, K. L. Kreider, G. W. Young, Edward A. Evans, G. Zhang

Edward A Evans

This work presents modeling and simulation results of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort that motivates the modeling, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor, nanofiber, and atomic levels to form a comprehensive model. Numerical simulations that link the concentration field with the evolution of the coating free surface predict that as the Damkohler number is increased the coating morphology changes …


Investigation Of The Physical And Electronic Properties Of Indium Doped Zinc Oxide Nanofibers Synthesized By Electrospinning, A. F. Lotus, Y. C. Kang, R. D. Ramsier, George G. Chase Apr 2014

Investigation Of The Physical And Electronic Properties Of Indium Doped Zinc Oxide Nanofibers Synthesized By Electrospinning, A. F. Lotus, Y. C. Kang, R. D. Ramsier, George G. Chase

George G Chase

Nanostructured metal oxides and particularly nanofiber based materials can provide significant advances for the miniaturization of electronic, optoelectronic, photonic, sensor, and energy conversion devices with enhanced performance based on their unique material properties. In this study, indium doped zinc oxide (IZO) nanofibers were synthesized by electrospinning. These nanofibers have diameters in the range 50-100 nm. The effects of indium addition on the structural, optical, and electrical properties of the zinc oxide nanofiber matrices were investigated. The IZO nanofibers undergo significant changes in their optical and electrical properties compared to undoped zinc oxide nanofibers.


Ionic Liquids And Gumbos For Biomedical And Sensing Applications, Paul Kipkorir Sang Magut Jan 2014

Ionic Liquids And Gumbos For Biomedical And Sensing Applications, Paul Kipkorir Sang Magut

LSU Doctoral Dissertations

This dissertation is a synopsis of advancements in the field of ionic liquids and a group of uniform materials based on organic salts (GUMBOS) in biomedical applications, especially with regard to cancer research. The toxicity of chemotherapeutic agents to normal tissues and drug resistance are a major concern in cancer treatment. In this dissertation, GUMBOS and nanoGUMBOS as well as ionic liquids and nanodroplets are explored as possible chemotherapeutic agents with minimal toxicity to normal cells. In the first part of my dissertation, exploitation of ionic liquid chemistry to modulate toxicity of rhodamine 6G is reported. Rhodamine 6G-based GUMBOS with …