Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Dark-Bright Solitons And Vortices In Bose-Einstein Condensates, Dong Yan Aug 2014

Dark-Bright Solitons And Vortices In Bose-Einstein Condensates, Dong Yan

Doctoral Dissertations

This dissertation focuses on the properties of nonlinear waves in Bose-Einstein condensates (BECs). The fundamental model here is the nonlinear Schrodinger equation, the so-called Gross-Pitaevskii (GP) equation, which is a mean-field description of BECs. The systematic analysis begins by considering the dark-bright (DB)-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component BECs. The interaction between two DB solitons in a homogeneous condensate and at the presence of the trap are both considered. Our analytical approximation relies in a Hamiltonian perturbation theory, which leads to an equation of motion of the centers of DB-soliton interacting pairs. Employing this equation, we demonstrate the …


Impacts Of Climate Change On The Evolution Of The Electrical Grid, Melissa Ree Allen Aug 2014

Impacts Of Climate Change On The Evolution Of The Electrical Grid, Melissa Ree Allen

Doctoral Dissertations

Maintaining interdependent infrastructures exposed to a changing climate requires understanding 1) the local impact on power assets; 2) how the infrastructure will evolve as the demand for infrastructure changes location and volume and; 3) what vulnerabilities are introduced by these changing infrastructure topologies. This dissertation attempts to develop a methodology that will a) downscale the climate direct effect on the infrastructure; b) allow population to redistribute in response to increasing extreme events that will increase under climate impacts; and c) project new distributions of electricity demand in the mid-21st century.

The research was structured in three parts. The first …


Spatial Dynamic Models For Fishery Management And Waterborne Disease Control, Michael Robert Kelly Jr. Aug 2014

Spatial Dynamic Models For Fishery Management And Waterborne Disease Control, Michael Robert Kelly Jr.

Doctoral Dissertations

As the human population continues to grow, there is a need for better management of our natural resources in order for our planet to be able to produce enough to sustain us. One important resource we must consider is marine fish populations. We use the tool of optimal control to investigate harvesting strategies for maximizing yield of a fish population in a heterogeneous, finite domain. We determine whether these solutions include no-take marine reserves as part of the optimal solution. The fishery stock is modeled using a nonlinear, parabolic partial differential equation with logistic growth, movement by diffusion and advection, …


Multistep Kinetic Monte Carlo, Holly Nichole Johnson Clark Aug 2014

Multistep Kinetic Monte Carlo, Holly Nichole Johnson Clark

Doctoral Dissertations

Kinetic Monte Carlo (KMC) uses random numbers to simulate the time evolution of processes with well-defined rates. We analyze a multi-step KMC algorithm aimed at speeding up the single-step procedure and apply the algorithm to study a model for the growth of a surface dendrite. The growth of the dendrite is initiated when atoms diffusing on a substrate cluster due to lower hopping rates for highly coordinated atoms. The boundary of the cluster is morphologically unstable when the flux of new atoms is supplied in the far field, a scenario that could be generated by masking a portion of a …


Numerical Methods And Algorithms For High Frequency Wave Scattering Problems In Homogeneous And Random Media, Cody Samuel Lorton Aug 2014

Numerical Methods And Algorithms For High Frequency Wave Scattering Problems In Homogeneous And Random Media, Cody Samuel Lorton

Doctoral Dissertations

This dissertation consists of four integral parts with a unified objective of developing efficient numerical methods for high frequency time-harmonic wave equations defined on both homogeneous and random media. The first part investigates the generalized weak coercivity of the acoustic Helmholtz, elastic Helmholtz, and time-harmonic Maxwell wave operators. We prove that such a weak coercivity holds for these wave operators on a class of more general domains called generalized star-shape domains. As a by-product, solution estimates for the corresponding Helmholtz-type problems are obtained.

The second part of the dissertation develops an absolutely stable (i.e. stable in all mesh regimes) interior …


Analysis Of A Mathematical Model For The Heave Motion Of A Micro Aerial Vehicle With Flexible Wings Having Non-Local Damping Effects, Jonathan B. Walters Jul 2014

Analysis Of A Mathematical Model For The Heave Motion Of A Micro Aerial Vehicle With Flexible Wings Having Non-Local Damping Effects, Jonathan B. Walters

Doctoral Dissertations

In this work we analyze a one dimensional model for a flexible wing micro aerial vehicle which can undergo heaving motion. The vehicle is modeled with a non-local type of internal damping known as spatial hysteresis as well as viscous external damping. We present a rigorous theoretical analysis of the model proving that the linearly approximated system is well-posed and the first order feedback system operators generate exponentially stable C0–semigroups.

Furthermore, we present numerical simulations of control designs used on the linearly approximated model to control the associated nonlinear model in two different strategies. The first strategy used to …


Discrete Parity-Time Symmetric Nonlinear Schrodinger Lattices, Kai Li Apr 2014

Discrete Parity-Time Symmetric Nonlinear Schrodinger Lattices, Kai Li

Doctoral Dissertations

In this thesis we summarize the classical cases of one-dimensional oligomers and two dimensional plaquettes, respecting the parity-time (PT ) symmetry. We examine different types of solutions of such configurations with linear and nonlinear gain or loss profiles. For each configuration, we develop a dynamical model and examine its PT symmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain-loss coefficient, γ. Once the relevant waveforms have been identified (analytically or numerically), their stability as well as those of the ghost states in certain regimes is examined by means of linearization …


Numerical Solutions For Problems With Complex Physics In Complex Geometry, Yifan Wang Apr 2014

Numerical Solutions For Problems With Complex Physics In Complex Geometry, Yifan Wang

Doctoral Dissertations

In this dissertation, two high order accurate numerical methods, Spectral Element Method (SEM) and Discontinuous Galerkin method (DG), are discussed and investigated. The advantages of both methods and their applicable areas are studied. Particular problems in complex geometry with complex physics are investigated and their high order accurate numerical solutions obtained by using either SEM or DG are presented. Furthermore, the Smoothed Particle Hydrodynamics (SPH) (a mesh-free weighted interpolation method) is implemented on graphics processing unit (GPU). Some numerical simulations of the complex flow with a free surface are presented and discussed to show the advantages of SPH method in …