Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang Jan 2013

Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang

Wayne State University Dissertations

This dissertation study focuses on (1) probing the magneto-structural phase transformation in nanoscale MnAs; (2) evaluation of the size-dependent phase stability of type-B MnAs (prepared by rapid injection); and (3) developing a general synthetic method for transition metal arsenide nanoparticles.

Discrete MnAs nanoparticles that adopt different structures at room temperature (type-A, α-structure and type-B, β-structure) have been prepared by the solution-phase arrested precipitation method. Atomic pair distribution and Rietveld refinement were employed on synchrotron data to explore the structural transitions of the bulk and nanoparticle samples, and these results were compared to AC magnetic susceptibility measurements of the samples. The …


Green Diesel Production Via Catalytic Hydrogenation/Decarboxylation Of Triglycerides And Fatty Acids Of Vegetable Oil And Brown Grease, Elvan Sari Jan 2013

Green Diesel Production Via Catalytic Hydrogenation/Decarboxylation Of Triglycerides And Fatty Acids Of Vegetable Oil And Brown Grease, Elvan Sari

Wayne State University Dissertations

Increase in the petroleum prices, projected increases in the world’s energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel— a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel– hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating …


Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang Jan 2013

Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang

Wayne State University Theses

It is desired to have artificial optical materials with controllable optical properties. Optical glass is the most common optical material for various applications. This research will attempt to create a thin layer on the substrate with controllable optical properties. The thin layer is a composite material with nanoscale features and controllable refractive index. Two-dimensional (2D) nanostructures will be created on the surface of optical glass using nanosphere lithography. In comparison with conventional techniques, this approach is more efficient and cost-effective for the creation of large areas of thin surface layers as an artificial material. A uniform monolayer of nanospheres will …


Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman Jan 2013

Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman

Wayne State University Dissertations

The ever evolving technological applications such as with portable electronics and electric vehicles have led to increasing energy demands that have proven the existing commercial LIB capacity insufficient. Recently, the most promising anode material to substitute the traditional graphite is Si. As an anode Si has low discharge potential and theoretical the highest known theoretical capacity (>10 fold of graphite). However, due to the increased accommodated Li+ during charge-discharge reactions, silicon's volume varies up to 400%, causing pulverization and loss of electrical contact.

This dissertation focuses on a systematic approach in developing effective means to utilize Si for improved …