Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Carcinogenic Adducts Induce Distinct Dna Polymerase Binding Orientations, Kyle B. Vrtis, Radoslaw P. Markiewicz, Louis J. Romano, David Rueda Jun 2013

Carcinogenic Adducts Induce Distinct Dna Polymerase Binding Orientations, Kyle B. Vrtis, Radoslaw P. Markiewicz, Louis J. Romano, David Rueda

Chemistry Faculty Research Publications

DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear. Here, we measure interactions between a DNA polymerase and carcinogenic DNA adducts in real-time by single-molecule fluorescence. We find the degree to which an adduct affects polymerase binding to the DNA depends on the adduct location with respect to the primer terminus, the adduct structure and the nucleotides present in the solution. Not only do the …


Investigating Hfq-Mrna Interactions In Bacteria, Martha Audra Faner Jan 2013

Investigating Hfq-Mrna Interactions In Bacteria, Martha Audra Faner

Wayne State University Dissertations

Regulatory RNAs (sRNAs) are essential for bacteria to thrive in diverse environments and they also play a key role in virulence [11]. Trans-sRNAs affect the stability and/or translation of their target mRNAs through complementary base-pairing. The base-pairing interaction is not perfect and requires the action of an RNA binding protein, Hfq. Hfq facilitates these RNA-RNA interactions by stabilizing duplex formation, aiding in structural rearrangements, increasing the rate of structural opening, and/or by increasing the rate of annealing [18-21]. Hfq has two well characterized binding surfaces: the proximal surface, which binds AU rich stretches typical of sRNAs, and the distal surface, …


Single-Molecule Studies Of Local And Global Nucleic-Acid Dynamics, Eric Muthuri Patrick Jan 2013

Single-Molecule Studies Of Local And Global Nucleic-Acid Dynamics, Eric Muthuri Patrick

Wayne State University Dissertations

Nucleic acids undergo both global and local conformational changes that are important for their function. Structural studies have over the decades been invaluable in elucidation of various biomolecular mechanisms, hence contributing significantly to the understanding of biological events. However, a clear understanding of how molecules function in the cellular context requires investigation of their interconversion between multiple conformations, including mapping the folding landscape and any coupled changes in conformation. Work in this thesis focuses on fluorescence experiments, mainly at a single-molecule level to investigate such processes.

First, a novel single-molecule approach is described focusing on local dynamics within nucleic acids …


Disulfide By Design 2.0: A Web-Based Tool For Disulfide Engineering In Proteins, Douglas B. Craig, Alan A. Dombkowski Jan 2013

Disulfide By Design 2.0: A Web-Based Tool For Disulfide Engineering In Proteins, Douglas B. Craig, Alan A. Dombkowski

Wayne State University Associated BioMed Central Scholarship

Abstract

Background

Disulfide engineering is an important biotechnological tool that has advanced a wide range of research. The introduction of novel disulfide bonds into proteins has been used extensively to improve protein stability, modify functional characteristics, and to assist in the study of protein dynamics. Successful use of this technology is greatly enhanced by software that can predict pairs of residues that will likely form a disulfide bond if mutated to cysteines.

Results

We had previously developed and distributed software for this purpose: Disulfide by Design (DbD). The original DbD program has been widely used; however, it has a number …


Development Of Peptide Inhibitors Targeting Clostridium Difficile Toxins A/B And Characterizing The Regulatory Role Of A Putative Negative Regulator Tcdc In Clostridium Difficile Toxin Gene Expression, Sanofar Jainul Abdeen Jan 2013

Development Of Peptide Inhibitors Targeting Clostridium Difficile Toxins A/B And Characterizing The Regulatory Role Of A Putative Negative Regulator Tcdc In Clostridium Difficile Toxin Gene Expression, Sanofar Jainul Abdeen

Wayne State University Dissertations

Clostridium difficile infections cause one of the most common and vital hospitalacquired

diseases often associated with broad-spectrum antibiotic usage. TcdA and TcdB

are the key virulence factors involved in major patho-physiology. While standard

antibiotics provide some respite, due to the high relapse rates and the emergence of more

severe disease presentations, antibiotics alone have often proven to be suboptimal.

Therefore there is a desperate need to develop an effective non-antimicrobial

therapeutics. Part of this work focuses on identification and further characterization of

peptide therapeutic that target the major virulence factor TcdA/TcdB. Towards

development of mechanistic-based anti-toxin agent, phage display was …


Development And Optimization Of The First High Throughput In Vitro Fret Assay To Characterize The Saccharomyces Cerevisiae Gpi-T, Sandamali Amarasingha Ekanayaka Jan 2013

Development And Optimization Of The First High Throughput In Vitro Fret Assay To Characterize The Saccharomyces Cerevisiae Gpi-T, Sandamali Amarasingha Ekanayaka

Wayne State University Dissertations

DEVELOPMENT AND OPTIMIZATION OF AN IN VITRO FRET ASSAY TO CHARACTERIZE THE SACCHAROMYCES CEREVISIAE GPI TRANSAMIDASE

By

SANDAMALI AMARASINGHA EKANAYAKA

December 2013

Advisor: Dr. Tamara L. Hendrickson

Major: Biochemistry

Degree: Doctor of Philosophy

The enzyme glycosylphosphatidylinositol transamidase (GPI-T) mediates the attachment of a glycosylphosphatidylinositol (GPI) anchor to the C-terminus of specific proteins to produce GPI anchored proteins. This post-translational modification is essential for viability of eukaryotic organisms. However, very little is known about GPI-T and its catalytic activity. Thus, the research described in this abstract was conducted to develop an in vitro assay to monitor GPI-T. A high-throughput assay for …


Synthesis And Application Of Atp Analogs For Phosphorylation-Dependent Kinase-Substrate Crosslinking, Satish Kumar Garre Venkata Raghavendra Jan 2013

Synthesis And Application Of Atp Analogs For Phosphorylation-Dependent Kinase-Substrate Crosslinking, Satish Kumar Garre Venkata Raghavendra

Wayne State University Dissertations

Phosphorylation is an important post-translational modification that plays a key role in a variety of signaling cascades and cellular functions. Kinases phosphorylate protein substrates in a highly regulated manner and are promiscuous. Understanding kinase-substrate specificity has been challenging and there is a need for new chemical tools. To this end we developed -phosphate modified ATP photocrosslinking analogs ATP-ArN3 and ATP-BP, that crosslink substrate and kinase in a phosphorylation dependent manner. We have successfully demonstrated that ATP-ArN3 and ATP-BP can be used with natural kinase and substrates using cell lysates in vitro. We used our approach to identify novel kinases of …


Single-Stranded Dna Scanning And Deamination With Single-Molecule Resolution, Padhuk Gamarala Senavirathne Jan 2013

Single-Stranded Dna Scanning And Deamination With Single-Molecule Resolution, Padhuk Gamarala Senavirathne

Wayne State University Dissertations

SINGLE-STRANDED DNA SCANNING AND DEAMINATION WITH SINGLE-MOLECULE RESOLUTION

by

GAYAN SENAVIRATHNE

December 2013

Advisor: Dr. David Rueda & Dr.Ashok Bhagwat

Major: Chemistry (Analytical)

Degree: Doctor of Philosophy

APOBEC3G (Apo3G) and Activation-Induced cytidine Deaminase (AID) are the most notable members of APOBEC enzymes, a family of cytidine (C) deaminases with crucial functions in the immune system. In T cells, Apo3G deaminates C in viral cDNA to halt the replication of HIV 1 strains lacking viral infectivity factor (vif). In B cells, AID is required for the diversification of antibodies through initiation of somatic hypermutation (SHM), and class switch recombination (CSR), by …


Computational Approaches To Anti-Toxin Therapies And Biomarker Identification, Rebecca Jane Swett Jan 2013

Computational Approaches To Anti-Toxin Therapies And Biomarker Identification, Rebecca Jane Swett

Wayne State University Dissertations

This work describes the fundamental study of two bacterial toxins with computational methods, the rational design of a potent inhibitor using molecular dynamics, as well as the development of two bioinformatic methods for mining genomic data.

Clostridium difficile is an opportunistic bacillus which produces two large glucosylating toxins. These toxins, TcdA and TcdB cause severe intestinal damage. As Clostridium difficile harbors considerable antibiotic resistance, one treatment strategy is to prevent the tissue damage that the toxins cause. The catalytic glucosyltransferase domain of TcdA and TcdB was studied using molecular dynamics in the presence of both a protein-protein binding partner and …


Spliceosomal Prp24 Unwinds A Minimal U2/U6 Complex From Yeast, Chandani Manoja Warnasooriya Jan 2013

Spliceosomal Prp24 Unwinds A Minimal U2/U6 Complex From Yeast, Chandani Manoja Warnasooriya

Wayne State University Theses

Splicing plays a major role in eukaryotic gene expression by processing pre-mRNA to form mature mRNA. Pre-mRNAs undergo splicing to remove introns, non–protein coding regions, and religate exons, protein coding regions. This process is catalyzed by the spliceosome, which consists of five small nuclear ribonucleoprotein particles (snRNPs: U1, U2, U4, U5 and U6) and numerous protein factors. Proper assembly of spliceosomal components is critical for function, and thus, defects in assembly can be lethal. Several spliceosomal proteins facilitate structural rearrangements important for spliceosomal assembly and function. Prp24 is an essential factor in U6 snRNP assembly, and it has been proposed …