Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Dartmouth Scholarship

Mass

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

The Metallicity Of The Cm Draconis System, Ryan C. Terrien, Scott W. Fleming, Suvrath Mahadevan, Rohit Deshpande, Gregory A. Feiden Nov 2012

The Metallicity Of The Cm Draconis System, Ryan C. Terrien, Scott W. Fleming, Suvrath Mahadevan, Rohit Deshpande, Gregory A. Feiden

Dartmouth Scholarship

The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27-day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are amongst the lowest mass stars with well-measured masses and radii (~ 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the …


Self-Consistent Magnetic Stellar Evolution Models Of The Detached, Solar-Type Eclipsing Binary Ef Aquarii, Gregory A. Feiden, Brian Chaboyer Oct 2012

Self-Consistent Magnetic Stellar Evolution Models Of The Detached, Solar-Type Eclipsing Binary Ef Aquarii, Gregory A. Feiden, Brian Chaboyer

Dartmouth Scholarship

We introduce a new one-dimensional stellar evolution code, based on the existing Dartmouth code, that self-consistently accounts for the presence of a globally pervasive magnetic field. The methods involved in perturbing the equations of stellar structure, the equation of state, and the mixing-length theory of convection are presented and discussed. As a first test of the code's viability, stellar evolution models are computed for the components of a solar-type, detached eclipsing binary (DEB) system, EF Aquarii, shown to exhibit large disagreements with stellar models. The addition of the magnetic perturbation corrects the radius and effective temperature discrepancies observed in EF …


Reevaluating The Mass-Radius Relation For Low-Mass, Main-Sequence Stars, Gregory A. Feiden, Brian Chaboyer Sep 2012

Reevaluating The Mass-Radius Relation For Low-Mass, Main-Sequence Stars, Gregory A. Feiden, Brian Chaboyer

Dartmouth Scholarship

We examine the agreement between the observed and theoretical low-mass (<0.8 M ) stellar main-sequence mass-radius relationship by comparing detached eclipsing binary (DEB) data with a new, large grid of stellar evolution models. The new grid allows for a realistic variation in the age and metallicity of the DEB population, characteristic of the local galactic neighborhood. Overall, our models do a reasonable job of reproducing the observational data. A large majority of the models match the observed stellar radii to within 4%, with a mean absolute error of 2.3%. These results represent a factor of two improvement compared to …


The Hidden “Agn Main Sequence”: Evidence For A Universal Black Hole Accretion To Star Formation Rate Ratio Since Z ∼ 2 Producing An M Bh - M * Relation, J. R. Mullaney, E. Daddi, M. Béthermin, D. Elbaz, S. Juneau, M. Pannella, M. T. Sargent, D. M. Alexander, R. C. Hickox Jun 2012

The Hidden “Agn Main Sequence”: Evidence For A Universal Black Hole Accretion To Star Formation Rate Ratio Since Z ∼ 2 Producing An M Bh - M * Relation, J. R. Mullaney, E. Daddi, M. Béthermin, D. Elbaz, S. Juneau, M. Pannella, M. T. Sargent, D. M. Alexander, R. C. Hickox

Dartmouth Scholarship

Using X-ray stacking analyses we estimate the average amounts of supermassive black hole (SMBH) growth taking place in star-forming galaxies at z ~ 1 and z ~ 2 as a function of galaxy stellar mass (M *). We find that the average SMBH growth rate follows remarkably similar trends with M * and redshift as the average star formation rates (SFRs) of their host galaxies (i.e., \dot{M}_BH vprop M * 0.86 ± 0.39 for the z ~ 1 sample and \dot{M}_BH vprop M * 1.05 ± 0.36 for the z ~ 2 sample). It follows that the ratio of …


A Reverberation Lag For The High-Ionization Component Of The Broad-Line Region In The Narrow-Line Seyfert 1 Mrk 335, C. J. Grier, B. M. Peterson, R. W. Pogge, K. D. Denney, M. C. Bentz, Paul Martini, S. G. Sergeev, S. Kaspi, Y. Zu, C. S. Kochanek, B. J. Shappee, C. Araya Salvo, T G. Beatty, J. C. Bird, D. J. Bord, G. A. Borman, X. Che, C. Chen Jan 2012

A Reverberation Lag For The High-Ionization Component Of The Broad-Line Region In The Narrow-Line Seyfert 1 Mrk 335, C. J. Grier, B. M. Peterson, R. W. Pogge, K. D. Denney, M. C. Bentz, Paul Martini, S. G. Sergeev, S. Kaspi, Y. Zu, C. S. Kochanek, B. J. Shappee, C. Araya Salvo, T G. Beatty, J. C. Bird, D. J. Bord, G. A. Borman, X. Che, C. Chen

Dartmouth Scholarship

We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He ii λ 4686 broad emission line relative to the optical continuum to be 2.7 °æ 0.6 days and the lag in the Hβλ 4861 broad emission line to be 13.9 °æ 0.9 days. Combined with the line width, the He ii lag yields a black hole mass MBH = (2. 6 °æ 0. 8) °ø 107M …