Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Dartmouth Scholarship

Absorption

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Deep Silicate Absorption Features In Compton-Thick Active Galactic Nuclei Predominantly Arise Due To Dust In The Host Galaxy, A. D. Goulding, D. M. Alexander, F. E. Bauer, W. R. Forman, R. C. Hickox Jul 2012

Deep Silicate Absorption Features In Compton-Thick Active Galactic Nuclei Predominantly Arise Due To Dust In The Host Galaxy, A. D. Goulding, D. M. Alexander, F. E. Bauer, W. R. Forman, R. C. Hickox

Dartmouth Scholarship

We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona fide Compton-thick (N H > 1.5 × 1024 cm–2) active galactic nuclei (AGNs) with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at λ ~ 9.7 μm in archival low-resolution (R ~ 57-127) Spitzer Infrared Spectrograph spectroscopy, and show that only a minority (≈45%) of nearby Compton-thick AGNs have strong Si-absorption features (S 9.7 = ln (f int/f obs) 0.5) which would indicate significant dust attenuation. The majority (≈60%) are star …


Analysis Of The Early-Time Optical Spectra Of Sn 2011fe In M101, J. T. Parrent, D. A. Howell, B. Friesen, R. C. Thomas Jun 2012

Analysis Of The Early-Time Optical Spectra Of Sn 2011fe In M101, J. T. Parrent, D. A. Howell, B. Friesen, R. C. Thomas

Dartmouth Scholarship

The nearby Type Ia supernova SN 2011fe in M101 (cz=241 km s^-1) provides a unique opportunity to study the early evolution of a "normal" Type Ia supernova, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, …